Fractional Ginzburg-Landau equation for fractal media

被引:166
作者
Tarasov, VE [1 ]
Zaslavsky, GM
机构
[1] Moscow MV Lomonosov State Univ, Skobeltsyn Inst Nucl Phys, Moscow 119992, Russia
[2] NYU, Courant Inst Math Sci, New York, NY 10012 USA
[3] NYU, Dept Phys, New York, NY 10003 USA
基金
美国国家科学基金会;
关键词
fractional equation; fractional derivatives and integrals fractal medium; Ginzburg-Landau equation;
D O I
10.1016/j.physa.2005.02.047
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We derive the fractional generalization of the Ginzburg-Landau equation from the variational Euler-Lagrange equation for fractal media. To describe fractal media we use the fractional integrals considered as approximations of integrals on fractals. Some simple solutions of the Ginzburg-Landau equation for fractal media are considered and different forms of the fractional Ginzburg-Landau equation or nonlinear Schrodinger equation with fractional derivatives are presented. The Agrawal variational principle and its generalization have been applied. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:249 / 261
页数:13
相关论文
共 50 条
  • [31] THE GINZBURG-LANDAU EQUATION WITH NONZERO NEUMANN BOUNDARY DATA
    BU, C
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1994, 23 (03) : 399 - 404
  • [32] On the stability of localized structures in the complex Ginzburg-Landau equation
    Descalzi, O
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2003, 327 (1-2) : 23 - 28
  • [33] Properties of the solutions of the Ginzburg-Landau equation on the bifurcation branch
    Myrto Sauvageot
    Nonlinear Differential Equations and Applications NoDEA, 2003, 10 : 375 - 397
  • [34] Convergence towards attractors for a degenerate Ginzburg-Landau equation
    N. I. Karachalios
    N. B. Zographopoulos
    Zeitschrift für angewandte Mathematik und Physik ZAMP, 2005, 56 : 11 - 30
  • [35] Generalized spatiotemporal chaos synchronization of the Ginzburg-Landau equation
    金英花
    徐振源
    Chinese Physics B, 2011, (12) : 134 - 146
  • [36] Model Reduction of the Nonlinear Complex Ginzburg-Landau Equation
    Ilak, Milos
    Bagheri, Shervin
    Brandt, Luca
    Rowley, Clarence W.
    Henningson, Dan S.
    SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2010, 9 (04): : 1284 - 1302
  • [37] Stability of solutions to the Ginzburg-Landau equation with neumann condition
    Morita, Y
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1997, 30 (06) : 3939 - 3946
  • [38] A LIOUVILLE THEOREM FOR AN INTEGRAL EQUATION OF THE GINZBURG-LANDAU TYPE
    Lei, Yutian
    Xu, Xin
    HOUSTON JOURNAL OF MATHEMATICS, 2023, 49 (01): : 231 - 245
  • [39] Convergence towards attractors for a degenerate Ginzburg-Landau equation
    Karachalios, NI
    Zographopoulos, NB
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2005, 56 (01): : 11 - 30
  • [40] Relative periodic solutions of the complex Ginzburg-Landau equation
    López, V
    Boyland, P
    Heath, MT
    Moser, RD
    SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2005, 4 (04): : 1042 - 1075