Fundus image segmentation via hierarchical feature learning

被引:21
作者
Guo, Song [1 ]
机构
[1] Xian Univ Architecture & Technol, Sch Informat & Control Engn, Xian 710055, Peoples R China
关键词
High-resolution feature; Hierarchical network; Vessel segmentation; Lesion segmentation; VESSEL SEGMENTATION; RETINAL IMAGES; DIABETIC-RETINOPATHY; NETWORK;
D O I
10.1016/j.compbiomed.2021.104928
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Fundus Image Segmentation (FIS) is an essential procedure for the automated diagnosis of ophthalmic diseases. Recently, deep fully convolutional networks have been widely used for FIS with state-of-the-art performance. The representative deep model is the U-Net, which follows an encoder-decoder architecture. I believe it is suboptimal for FIS because consecutive pooling operations in the encoder lead to low-resolution representation and loss of detailed spatial information, which is particularly important for the segmentation of tiny vessels and lesions. Motivated by this, a high-resolution hierarchical network (HHNet) is proposed to learn semantic-rich high-resolution representations and preserve spatial details simultaneously. Specifically, a High-resolution Feature Learning (HFL) module with increasing dilation rates was first designed to learn the high-level high-resolution representations. Then, the HHNet was constructed by incorporating three HFL modules and two feature aggregation modules. The HHNet runs in a coarse-to-fine manner, and fine segmentation maps are output at the last level. Extensive experiments were conducted on fundus lesion segmentation, vessel segmentation, and optic cup segmentation. The experimental results reveal that the proposed method shows highly competitive or even superior performance in terms of segmentation performance and computation cost, indicating its potential advantages in clinical application.
引用
收藏
页数:14
相关论文
共 73 条
  • [1] Andersen JKH, 2020, PR MACH LEARN RES, V121, P19
  • [2] [Anonymous], 2015, P INT C LEARN REPR
  • [3] Retinal Microvascular Signs May Provide Clues to the Underlying Vasculopathy in Patients With Deep Intracerebral Hemorrhage
    Baker, Michelle L.
    Hand, Peter J.
    Liew, Gerald
    Wong, Tien Y.
    Rochtchina, Elena
    Mitchell, Paul
    Lindley, Richard I.
    Hankey, Graeme J.
    Wang, Jie Jin
    [J]. STROKE, 2010, 41 (04) : 618 - 623
  • [4] Glaucoma risk index: Automated glaucoma detection from color fundus images
    Bock, Ruediger
    Meier, Joerg
    Nyul, Laszlo G.
    Hornegger, Joachim
    Michelson, Georg
    [J]. MEDICAL IMAGE ANALYSIS, 2010, 14 (03) : 471 - 481
  • [5] Deep Learning for Cardiac Image Segmentation: A Review
    Chen, Chen
    Qin, Chen
    Qiu, Huaqi
    Tarroni, Giacomo
    Duan, Jinming
    Bai, Wenjia
    Rueckert, Daniel
    [J]. FRONTIERS IN CARDIOVASCULAR MEDICINE, 2020, 7
  • [6] DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs
    Chen, Liang-Chieh
    Papandreou, George
    Kokkinos, Iasonas
    Murphy, Kevin
    Yuille, Alan L.
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2018, 40 (04) : 834 - 848
  • [7] Das V, 2017, J MED IMAGING, V4, DOI 10.1117/1.JMI.4.2.024002
  • [8] TeleOphta: Machine learning and image processing methods for teleophthalmology
    Decenciere, E.
    Cazuguel, G.
    Zhang, X.
    Thibault, G.
    Klein, J. -C.
    Meyer, F.
    Marcotegui, B.
    Quellec, G.
    Lamard, M.
    Danno, R.
    Elie, D.
    Massin, P.
    Viktor, Z.
    Erginay, A.
    Lay, B.
    Chabouis, A.
    [J]. IRBM, 2013, 34 (02) : 196 - 203
  • [9] Blood vessel segmentation methodologies in retinal images - A survey
    Fraz, M. M.
    Remagnino, P.
    Hoppe, A.
    Uyyanonvara, B.
    Rudnicka, A. R.
    Owen, C. G.
    Barman, S. A.
    [J]. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2012, 108 (01) : 407 - 433
  • [10] Multiscale segmentation of exudates in retinal images using contextual cues and ensemble classification
    Fraz, M. Moazam
    Jahangir, Waqas
    Zahid, Saqib
    Hamayun, Mian M.
    Barman, Sarah A.
    [J]. BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2017, 35 : 50 - 62