A Hybrid of Deep Reinforcement Learning and Local Search for the Vehicle Routing Problems

被引:87
|
作者
Zhao, Jiuxia [1 ]
Mao, Minjia [2 ]
Zhao, Xi [3 ]
Zou, Jianhua [1 ]
机构
[1] Xi An Jiao Tong Univ, Sch Elect & Informat Engn, Xian 710049, Peoples R China
[2] Xi An Jiao Tong Univ, Sch Math & Stat, Xian 710049, Peoples R China
[3] Xi An Jiao Tong Univ, Sch Management, Xian 710049, Peoples R China
基金
中国国家自然科学基金;
关键词
Routing; Adaptation models; Heuristic algorithms; Search problems; Training; Optimization; VRP; VRPTW; routing simulator; deep reinforcement learning; adaptive critic; local search; LARGE NEIGHBORHOOD SEARCH; OPTIMIZATION; ALGORITHMS; DELIVERY;
D O I
10.1109/TITS.2020.3003163
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Different variants of the Vehicle Routing Problem (VRP) have been studied for decades. State-of-the-art methods based on local search have been developed for VRPs, while still facing problems of slow running time and poor solution quality in the case of large problem size. To overcome these problems, we first propose a novel deep reinforcement learning (DRL) model, which is composed of an actor, an adaptive critic and a routing simulator. The actor, based on the attention mechanism, is designed to generate routing strategies. The adaptive critic is devised to change the network structure adaptively, in order to accelerate the convergence rate and improve the solution quality during training. The routing simulator is developed to provide graph information and reward with the actor and adaptive cirtic. Then, we combine this DRL model with a local search method to further improve the solution quality. The output of the DRL model can serve as the initial solution for the following local search method, from where the final solution of the VRP is obtained. Tested on three datasets with customer points of 20, 50 and 100 respectively, experimental results demonstrate that the DRL model alone finds better solutions compared to construction algorithms and previous DRL approaches, while enabling a 5- to 40-fold speedup. We also observe that combining the DRL model with various local search methods yields excellent solutions at a superior generation speed, comparing to that of other initial solutions.
引用
收藏
页码:7208 / 7218
页数:11
相关论文
共 50 条
  • [1] Deep Reinforcement Learning for Solving Vehicle Routing Problems With Backhauls
    Wang, Conghui
    Cao, Zhiguang
    Wu, Yaoxin
    Teng, Long
    Wu, Guohua
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, : 1 - 15
  • [2] DeepLS: Local Search for Network Optimization Based on Lightweight Deep Reinforcement Learning
    Di Cicco, Nicola
    Ibrahimi, Memedhe
    Troia, Sebastian
    Tornatore, Massimo
    IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, 2024, 21 (01): : 108 - 119
  • [3] Deep Reinforcement Learning for the Electric Vehicle Routing Problem With Time Windows
    Lin, Bo
    Ghaddar, Bissan
    Nathwani, Jatin
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2022, 23 (08) : 11528 - 11538
  • [4] Multiobjective Vehicle Routing Optimization With Time Windows: A Hybrid Approach Using Deep Reinforcement Learning and NSGA-II
    Wu, Rixin
    Wang, Ran
    Hao, Jie
    Wu, Qiang
    Wang, Ping
    Niyato, Dusit
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2025, 26 (03) : 4032 - 4047
  • [5] On Deep Reinforcement Learning for Static Routing and Wavelength Assignment
    Di Cicco, Nicola
    Mercan, Emre Furkan
    Karandin, Oleg
    Ayoub, Omran
    Troia, Sebastian
    Musumeci, Francesco
    Tornatore, Massimo
    IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2022, 28 (04)
  • [6] An End-to-End Deep Reinforcement Learning Framework for Electric Vehicle Routing Problem
    Wang, Mengqin
    Wei, Yanling
    Huang, Xueliang
    Gao, Shan
    IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (20): : 33671 - 33682
  • [7] Deep Reinforcement Learning for Solving the Heterogeneous Capacitated Vehicle Routing Problem
    Li, Jingwen
    Ma, Yining
    Gao, Ruize
    Cao, Zhiguang
    Lim, Andrew
    Song, Wen
    Zhang, Jie
    IEEE TRANSACTIONS ON CYBERNETICS, 2022, 52 (12) : 13572 - 13585
  • [8] Leveraging Transfer Learning in Deep Reinforcement Learning for Solving Combinatorial Optimization Problems Under Uncertainty
    Ezzahra Achamrah, Fatima
    IEEE ACCESS, 2024, 12 : 181477 - 181497
  • [9] Deep Reinforcement Learning Based Intelligent Resource Allocation in Hybrid Vehicle Scenario
    Lou, Chengkai
    Hou, Fen
    Li, Bo
    Ding, Hongwei
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2025, 74 (03) : 4656 - 4668
  • [10] A Deep Reinforcement Learning-Based Adaptive Large Neighborhood Search for Capacitated Electric Vehicle Routing Problems
    Wang, Chao
    Cao, Mengmeng
    Jiang, Hao
    Xiang, Xiaoshu
    Zhang, Xingyi
    IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE, 2025, 9 (01): : 131 - 144