Second bounded cohomology and WWPD

被引:2
|
作者
Handel, Michael [1 ]
Mosher, Lee [2 ]
机构
[1] CUNY, Grad Ctr, Lehman Coll, New York, NY 10021 USA
[2] Rutgers State Univ, Dept Math & Comp Sci, Newark, NJ USA
基金
美国国家科学基金会;
关键词
D O I
10.1215/21562261-2021-0017
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given a group acting on a Gromov hyperbolic space, Bestvina and Fujiwara introduced the WPD property-weak proper discontinuity-for studying the second bounded cohomology of the group. We carry out a more general study of second bounded cohomology using a really weak proper discontinuity property known as WWPD that was introduced by Bestvina, Bromberg, and Fujiwara.
引用
收藏
页码:873 / 904
页数:32
相关论文
共 50 条
  • [21] Relative bounded cohomology for groupoids
    Blank, Matthias
    GEOMETRIAE DEDICATA, 2016, 184 (01) : 27 - 66
  • [22] Amenability and acyclicity in bounded cohomology
    Moraschini, Marco
    Raptis, George
    REVISTA MATEMATICA IBEROAMERICANA, 2023, 39 (06) : 2371 - 2404
  • [23] Bounded cohomology of closed surfaces
    Soma, T
    TOPOLOGY, 1997, 36 (06) : 1221 - 1246
  • [24] Boundary maps in bounded cohomology
    Burger, M
    Iozzi, A
    GEOMETRIC AND FUNCTIONAL ANALYSIS, 2002, 12 (02) : 281 - 292
  • [25] BOUNDED COHOMOLOGY AND BINATE GROUPS
    Fournier-Facio, Francesco
    Loeh, Clara
    Moraschini, Marco
    JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2023, 115 (02) : 204 - 239
  • [26] Barycentric straightening and bounded cohomology
    Lafont, Jean-Francois
    Wang, Shi
    JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2019, 21 (02) : 381 - 403
  • [27] Bounded classes in the cohomology of manifolds
    Fujiwara, K
    Soma, T
    GEOMETRIAE DEDICATA, 2002, 92 (01) : 73 - 85
  • [28] Displacement techniques in bounded cohomology
    Campagnolo, Caterina
    Fournier-Facio, Francesco
    Lodha, Yash
    Moraschini, Marco
    MANUSCRIPTA MATHEMATICA, 2025, 176 (02)
  • [29] Bounded Classes in the Cohomology of Manifolds
    Koji Fujiwara
    Teruhiko Soma
    Geometriae Dedicata, 2002, 92 : 73 - 85
  • [30] Bounded cohomology of transformation groups
    Michael Brandenbursky
    Michał Marcinkowski
    Mathematische Annalen, 2022, 382 : 1181 - 1197