Dynamic evolution of the resistive wall mode in flowing plasmas

被引:3
作者
Chen, Longxi [1 ]
Ma, Zhiwei [1 ,2 ]
机构
[1] Chinese Acad Sci, Inst Plasma Phys, Hefei 230031, Peoples R China
[2] Zhejiang Univ, Inst Fus Theory & Simulat, Hangzhou 310027, Zhejiang, Peoples R China
关键词
STABILIZATION; INSTABILITY;
D O I
10.1088/0031-8949/83/03/035504
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The dynamic evolution of the resistive wall mode (RWM) is numerically studied in the slab geometry with and without a plasma flow. The linear growth rate of the RWM is dependent on the resistive wall location (d) and the plasma flow (v(0)). The RWM can be stabilized completely by a plasma flow only if the resistive wall is close enough to the plasma boundary (d < 1.15a). The direction of the plasma flow has an effect on stabilization. The field-aligned flow exhibits the strongest suppressing effect. On the other hand, the shear in the plasma flow has a weak effect on the linear evolution of the RWM. In the nonlinear phase, the amplitude of the perturbed magnetic energy linearly increases with time but very slowly, so that the RWM can be considered as nearly saturated. The saturation can be attributed to flux piling up on the resistive wall. The saturation level decreases with increasing v(0). A field-aligned flow gives the largest reduction of the saturation amplitude.
引用
收藏
页数:6
相关论文
共 50 条
[41]   H2 optimal control techniques for resistive wall mode feedback in tokamaks [J].
Clement, Mitchell ;
Hanson, Jeremy ;
Bialek, Jim ;
Navratil, Gerald .
NUCLEAR FUSION, 2018, 58 (04)
[42]   Effects of control voltage saturation and sensor noise on the resistive wall mode feedback in ITER [J].
Wang, S. ;
Liu, Y. Q. ;
Zheng, G. Y. ;
Song, X. M. ;
Hao, G. Z. ;
Xia, G. L. ;
Li, L. ;
Li, B. ;
Zhang, N. ;
Dong, G. Q. ;
Bai, X. .
NUCLEAR FUSION, 2019, 59 (09)
[43]   Excitation of Flow-Stabilized Resistive Wall Mode by Coupling with Stable Eigenmodes in Tokamaks [J].
Aiba, Nobuyuki ;
Hirota, Makoto .
PHYSICAL REVIEW LETTERS, 2015, 114 (06)
[44]   Bifurcation of resistive wall mode dynamics predicted by magnetohydrodynamic-kinetic hybrid theory [J].
Yang, S. X. ;
Wang, S. ;
Liu, Y. Q. ;
Hao, G. Z. ;
Wang, Z. X. ;
Song, X. M. ;
Wang, A. K. .
PHYSICS OF PLASMAS, 2015, 22 (09)
[45]   Numerical study of effect of plasma rotation and feedback control on resistive wall mode in ITER [J].
Cao Qi-Qi ;
Liu Yue ;
Wang Shuo .
ACTA PHYSICA SINICA, 2021, 70 (04)
[46]   Synergetic effects of magnetic feedback and plasma flow on resistive wall mode stability in tokamaks [J].
Xia, Guoliang ;
Liu, Yue ;
Liu, Yueqiang .
PLASMA PHYSICS AND CONTROLLED FUSION, 2014, 56 (09)
[47]   Synergistic effects of turbulence induced viscosity and plasma flow on resistive wall mode instability [J].
Hao, G. Z. ;
Liu, Y. Q. ;
Wang, A. K. ;
Chen, H. T. ;
Miao, Y. T. ;
Wang, S. ;
Zhang, N. ;
Dong, G. Q. ;
Xu, M. .
PLASMA PHYSICS AND CONTROLLED FUSION, 2020, 62 (07)
[48]   A rigorous approach to study kinetic and 3D effects on resistive wall mode [J].
Liu, Yueqiang ;
Villone, F. .
PLASMA PHYSICS AND CONTROLLED FUSION, 2009, 51 (11)
[49]   Nonlinear evolution of resistive tearing mode with sub-Alfvenic shear flow [J].
Li, J. H. ;
Ma, Z. W. .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2010, 115
[50]   Comment on "Resistive wall modes and related sideways forces in tokamak" [Phys. Plasmas 27, 012508 (2020)] [J].
Pustovitov, V. D. .
PHYSICS OF PLASMAS, 2020, 27 (05)