Multi-arm incipient infinite clusters in 2D: Scaling limits and winding numbers

被引:1
|
作者
Yao, Chang-Long [1 ]
机构
[1] Chinese Acad Sci, Acad Math & Syst Sci, Beijing, Peoples R China
来源
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES | 2018年 / 54卷 / 04期
基金
中国国家自然科学基金;
关键词
Percolation; Scaling limit; SLE; CLE; Incipient infinite cluster; Winding number; CRITICAL PERCOLATION; SLE; TREES; PROOF;
D O I
10.1214/17-AIHP858
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We study the alternating k-arm incipient infinite cluster (IIC) of site percolation on the triangular lattice T. Using Camia and Newman's result that the scaling limit of critical site percolation on T is CLE6, we prove the existence of the scaling limit of the k-arm IIC for k = 1, 2, 4. Conditioned on the event that there are open and closed arms connecting the origin to partial derivative D-R, we show that the winding number variance of the arms is (3/2+ o(1)) log R as R -> 8, which confirms a prediction of Wieland and Wilson [Phys. Rev. E 68 (2003) 056101]. Our proof uses two-sided radial SLE6 and coupling argument. Using this result we get an explicit form for the CLT of the winding numbers, and get analogous result for the 2-arm IIC, thus improving our earlier result.
引用
收藏
页码:1848 / 1876
页数:29
相关论文
共 25 条
  • [1] Incipient infinite percolation clusters in 2D
    Járai, AA
    ANNALS OF PROBABILITY, 2003, 31 (01): : 444 - 485
  • [2] Outlets of 2D invasion percolation and multiple-armed incipient infinite clusters
    Michael Damron
    Artëm Sapozhnikov
    Probability Theory and Related Fields, 2011, 150 : 257 - 294
  • [3] Outlets of 2D invasion percolation and multiple-armed incipient infinite clusters
    Damron, Michael
    Sapozhnikov, Artem
    PROBABILITY THEORY AND RELATED FIELDS, 2011, 150 (1-2) : 257 - 294
  • [4] Invasion percolation and the incipient infinite cluster in 2D
    Járai, AA
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2003, 236 (02) : 311 - 334
  • [5] Incipient Infinite Cluster in 2D Ising Percolation
    Higuchi, Y.
    Kinoshita, K.
    Takei, M.
    Zhang, Y.
    MARKOV PROCESSES AND RELATED FIELDS, 2014, 20 (02) : 173 - 182
  • [6] Invasion Percolation and the Incipient Infinite Cluster in 2D
    Antal A. Járai
    Communications in Mathematical Physics, 2003, 236 : 311 - 334
  • [7] Hamilton–Jacobi scaling limits of Pareto peeling in 2D
    Ahmed Bou-Rabee
    Peter S. Morfe
    Probability Theory and Related Fields, 2024, 188 : 235 - 307
  • [8] Multi-scaling of 2D impact fragmentation
    Katsuragi, H
    Sugino, D
    Honjo, H
    PHYSICS OF COMPLEX SYSTEMS (NEW ADVANCES AND PERSPECTIVES), 2004, 155 : 443 - 446
  • [9] Hamilton-Jacobi scaling limits of Pareto peeling in 2D
    Bou-Rabee, Ahmed
    Morfe, Peter S.
    PROBABILITY THEORY AND RELATED FIELDS, 2024, 188 (1-2) : 235 - 307
  • [10] Multiple scaling limits of U(N)2 x O(D) multi-matrix models
    Benedetti, Dario
    Carrozza, Sylvain
    Toriumi, Reiko
    Valette, Guillaume
    ANNALES DE L INSTITUT HENRI POINCARE D, 2022, 9 (02): : 367 - 433