Quantile regression in varying-coefficient models: non-crossing quantile curves and heteroscedasticity

被引:18
作者
Andriyana, Y. [1 ,2 ,4 ]
Gijbels, I. [1 ,2 ]
Verhasselt, A. [3 ]
机构
[1] Katholieke Univ Leuven, Dept Math, Leuven, Belgium
[2] Katholieke Univ Leuven, Leuven Stat Res LStat, Leuven, Belgium
[3] Univ Hasselt, Interuniv Inst Biostat & Stat Bioinformat, CenStat, Hasselt, Belgium
[4] Univ Padjadjaran, Fac Math & Nat Sci, Dept Stat, Bandung, Indonesia
关键词
B-splines; Crossing quantile curves; Longitudinal data; P-splines; Quantile regression; Quantile sheet; Variability; Varying-coefficient models; CENTILE CURVES; AIR-POLLUTION; ESTIMATORS; EFFICIENT; SELECTION; SPLINES; ERROR;
D O I
10.1007/s00362-016-0847-7
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Quantile regression is an important tool for describing the characteristics of conditional distributions. Population conditional quantile functions cannot cross for different quantile orders. Unfortunately estimated regression quantile curves often violate this and cross each other, which can be very annoying for interpretations and further analysis. In this paper we are concerned with flexible varying-coefficient modelling, and develop methods for quantile regression that ensure that the estimated quantile curves do not cross. A second aim of the paper is to allow for some heteroscedasticity in the error modelling, and to also estimate the associated variability function. We investigate the finite-sample performances of the discussed methods via simulation studies. Some applications to real data illustrate the use of the methods in practical settings.
引用
收藏
页码:1589 / 1621
页数:33
相关论文
共 42 条
[1]   Generalised additive modelling of air pollution, traffic volume and meteorology [J].
Aldrin, M ;
Haff, IH .
ATMOSPHERIC ENVIRONMENT, 2005, 39 (11) :2145-2155
[2]  
Alexander Marcus., 2011, International Journal of Statistics and Management System, V6, P47
[3]   P-splines quantile regression estimation in varying coefficient models [J].
Andriyana, Y. ;
Gijbels, I. ;
Verhasselt, A. .
TEST, 2014, 23 (01) :153-194
[4]  
[Anonymous], 1991, Counting Processes and Survival Analysis
[5]   Penalized likelihood regression for generalized linear models with non-quadratic penalties [J].
Antoniadis, Anestis ;
Gijbels, Irene ;
Nikolova, Mila .
ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2011, 63 (03) :585-615
[6]  
Birke M, 2013, 201303 U HAMB
[7]   Noncrossing quantile regression curve estimation [J].
Bondell, Howard D. ;
Reich, Brian J. ;
Wang, Huixia .
BIOMETRIKA, 2010, 97 (04) :825-838
[8]   Improving point and interval estimators of monotone functions by rearrangement [J].
Chernozhukov, V. ;
Fernandez-Val, I. ;
Galichon, A. .
BIOMETRIKA, 2009, 96 (03) :559-575
[10]   SMOOTHING REFERENCE CENTILE CURVES - THE LMS METHOD AND PENALIZED LIKELIHOOD [J].
COLE, TJ ;
GREEN, PJ .
STATISTICS IN MEDICINE, 1992, 11 (10) :1305-1319