Investigations of the νT=1 exciton condensate

被引:1
|
作者
Wiersma, R. D. [1 ]
Lok, J. C. S. [1 ]
Tiemann, L. [1 ]
Dietsche, W. [1 ]
von Klitzing, K. [1 ]
Wegscbeider, W. [2 ]
Schuh, D. [2 ]
机构
[1] Max Planck Inst Festkorperforsch, D-70569 Stuttgart, Germany
[2] Univ Regensburg, Fak Phys, D-93040 Regensburg, Germany
来源
关键词
Bose-Einstein condensate; bilayer; total filling factor one;
D O I
10.1142/S0217979207042719
中图分类号
O59 [应用物理学];
学科分类号
摘要
Recent experiments on quantum Hall bilayers in the vicinity of total filling factor 1 (nu(T)=1) have revealed the possibility of a superfluidic exciton condensate. We report on our experimental work involving the nu(T)=1 exciton condensate in independently contacted bilayer two-dimensional electron systems. We reproduce the previously reported zero bias resonant tunneling peak, a quantized Hall drag resistivity, and in counter-flow configuration, the near vanishing of both rho(xx) and rho(xy) resistivity components. At balanced electron densities in the layers, we find for both drag and counter-flow current configurations, thermally activated transport with a monotonic increase of the activation energy for d/l(B) < 1.65 with activation energies up to 0.4 K. In the imbalanced system the activation energies show a striking asymmetry around the balance point, implying that the gap to charge excitations is considerably different in the separate layers that form the bilayer condensate. This indicates that the measured activation energy is neither the binding energy of the excitons, nor their condensation energy. We establish a phase diagram of the excitonic condensate showing the enhancement of this state at slight imbalances.
引用
收藏
页码:1256 / 1265
页数:10
相关论文
共 50 条
  • [21] Nanotransformation and Current Fluctuations in Exciton Condensate Junctions
    Soller, H.
    Dolcini, F.
    Komnik, A.
    PHYSICAL REVIEW LETTERS, 2012, 108 (15)
  • [22] Quantum Hall drag of exciton condensate in graphene
    Liu, Xiaomeng
    Watanabe, Kenji
    Taniguchi, Takashi
    Halperin, Bertrand I.
    Kim, Philip
    NATURE PHYSICS, 2017, 13 (08) : 746 - +
  • [23] Exciton condensate emission in double quantum wells
    Krivolapchuk, VV
    Zhmodikov, AL
    Moskalenko, ES
    PHYSICS OF THE SOLID STATE, 2006, 48 (01) : 150 - 154
  • [24] Optical signatures of a fully dark exciton condensate
    Combescot, Monique
    Combescot, Roland
    Alloing, Mathieu
    Dubin, Francois
    EPL, 2014, 105 (04)
  • [25] Bosons in a lattice:: Exciton-phonon condensate
    Roubtsov, D
    Lépine, Y
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2001, 15 (10-11): : 1748 - 1751
  • [26] How to make a bilayer exciton condensate flow
    Su, Jung-Jung
    MacDonald, A. H.
    NATURE PHYSICS, 2008, 4 (10) : 799 - 802
  • [27] Exciton condensate emission in double quantum wells
    V. V. Krivolapchuk
    A. L. Zhmodikov
    E. S. Moskalenko
    Physics of the Solid State, 2006, 48 : 150 - 154
  • [28] Topological exciton condensate of imbalanced electrons and holes
    Seradjeh, Babak
    PHYSICAL REVIEW B, 2012, 85 (23):
  • [29] Berry phase effect on the exciton transport and on the exciton Bose-Einstein condensate
    Yao, Wang
    Niu, Qian
    PHYSICAL REVIEW LETTERS, 2008, 101 (10)
  • [30] Interwell exciton dispersion engineering, coherent phonons generation and optical detection of exciton condensate
    Lozovik, YE
    Ovchinnikov, IV
    Ostroumov, RP
    Wang, KL
    PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2004, 241 (01): : 85 - 100