Developing a Liu-type estimator in beta regression model

被引:27
作者
Algamal, Zakariya Yahya [1 ]
Abonazel, Mohamed R. [2 ]
机构
[1] Univ Mosul, Dept Stat & Informat, Mosul, Iraq
[2] Cairo Univ, Fac Grad Studies Stat Res, Dept Appl Stat & Econometr, Giza, Egypt
关键词
beta regression model; biased estimation; Liu-type estimator; multicollinearity; Spanish football league; RIDGE-REGRESSION; 2-PARAMETER ESTIMATOR; BIASED ESTIMATOR;
D O I
10.1002/cpe.6685
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
The beta regression model is a commonly used when the response variable has the form of fractions or percentages. The maximum likelihood (ML) estimator is used to estimate the regression coefficients of this model. However, it is known that multicollinearity problem affects badly the variance of ML estimator. Therefore, this paper introduces the Liu-type estimator for the beta regression model to handle the multicollinearity problem. The performance of the proposed (Liu-type) estimator is compared to the ML estimator and other biased (ridge and Liu) estimators depending on the mean squared error (MSE) criterion by conducting a simulation study and through an empirical application. The results indicated that the proposed estimator outperformed the ML, ridge, and Liu estimators.
引用
收藏
页数:11
相关论文
共 50 条
[1]   Almost unbiased ridge estimator in the count data regression models [J].
Abdulahad, Fedaa Noeel ;
Algamar, Zakariya Yahya .
ELECTRONIC JOURNAL OF APPLIED STATISTICAL ANALYSIS, 2021, 14 (01) :44-57
[2]   Beta ridge regression estimators: simulation and application [J].
Abonazel, Mohamed R. ;
Taha, Ibrahim M. .
COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2023, 52 (09) :4280-4292
[3]   Liu-Type Multinomial Logistic Estimator [J].
Abonazel, Mohamed R. ;
Farghali, Rasha A. .
SANKHYA-SERIES B-APPLIED AND INTERDISCIPLINARY STATISTICS, 2019, 81 (02) :203-225
[4]   A new difference-based weighted mixed Liu estimator in partially linear models [J].
Akdeniz, Esra ;
Akdeniz, Fikri ;
Roozbeh, Mahdi .
STATISTICS, 2018, 52 (06) :1309-1327
[5]   Generalized difference-based weighted mixed almost unbiased ridge estimator in partially linear models [J].
Akdeniz, Fikri ;
Roozbeh, Mahdi .
STATISTICAL PAPERS, 2019, 60 (05) :1717-1739
[6]   A new Liu-type estimator for the Inverse Gaussian Regression Model [J].
Akram, Muhammad Nauman ;
Amin, Muhammad ;
Qasim, Muhammad .
JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2020, 90 (07) :1153-1172
[7]   Shrinkage parameter selection via modified cross-validation approach for ridge regression model [J].
Algamal, Zakariya Yahya .
COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2020, 49 (07) :1922-1930
[8]   Liu-type estimator for the gamma regression model [J].
Algamal, Zakariya Yahya ;
Asar, Yasin .
COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2020, 49 (08) :2035-2048
[9]   A new method for choosing the biasing parameter in ridge estimator for generalized linear model [J].
Algamal, Zakariya Yahya .
CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2018, 183 :96-101
[10]   Shrinkage estimators for gamma regression model [J].
Algamal, Zakariya Yahya .
ELECTRONIC JOURNAL OF APPLIED STATISTICAL ANALYSIS, 2018, 11 (01) :253-268