Cellular Taxonomy of the Mouse Striatum as Revealed by Single-Cell RNA-Seq

被引:283
|
作者
Gokce, Ozgun [1 ,8 ]
Stanley, Geoffrey M. [2 ,3 ,4 ]
Treutlein, Barbara [3 ,4 ,7 ]
Neff, Norma F. [3 ,4 ]
Camp, J. Gray [7 ]
Malenka, Robert C. [5 ]
Rothwell, Patrick E. [1 ,5 ]
Fuccillo, Marc V. [1 ,5 ]
Sudhof, Thomas C. [1 ,6 ]
Quake, Stephen R. [3 ,4 ,6 ]
机构
[1] Stanford Univ, Dept Mol & Cellular Physiol, Stanford, CA 94305 USA
[2] Stanford Univ, Biophys Program, Stanford, CA 94305 USA
[3] Stanford Univ, Dept Bioengn, Stanford, CA 94305 USA
[4] Stanford Univ, Dept Appl Phys, Stanford, CA 94305 USA
[5] Stanford Univ, Nancy Pritzker Lab, Dept Psychiat & Behav Sci, Stanford, CA 94305 USA
[6] Stanford Univ, Howard Hughes Med Inst, Stanford, CA 94305 USA
[7] Max Planck Inst Evolutionary Anthropol, Dept Evolutionary Genet, Deutsch Pl 6, D-04103 Leipzig, Germany
[8] Univ Munich, Klinikum Univ Munchen, Inst Stroke & Dementia Res, D-81377 Munich, Germany
来源
CELL REPORTS | 2016年 / 16卷 / 04期
关键词
GENOME-WIDE ASSOCIATION; BASAL GANGLIA FUNCTION; INDIRECT PATHWAYS; DIRECT CONVERSION; STEM-CELLS; EXPRESSION; IDENTIFICATION; RECEPTORS; TRANSCRIPTOME; NEURONS;
D O I
10.1016/j.celrep.2016.06.059
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
The striatum contributes to many cognitive processes and disorders, but its cell types are incompletely characterized. We show that microfluidic and FACS-based single-cell RNA sequencing of mouse striatum provides a well-resolved classification of striatal cell type diversity. Transcriptome analysis revealed ten differentiated, distinct cell types, including neurons, astrocytes, oligodendrocytes, ependymal, immune, and vascular cells, and enabled the discovery of numerous marker genes. Furthermore, we identified two discrete subtypes of medium spiny neurons (MSNs) that have specific markers and that overexpress genes linked to cognitive disorders and addiction. We also describe continuous cellular identities, which increase heterogeneity within discrete cell types. Finally, we identified cell type-specific transcription and splicing factors that shape cellular identities by regulating splicing and expression patterns. Our findings suggest that functional diversity within a complex tissue arises from a small number of discrete cell types, which can exist in a continuous spectrum of functional states.
引用
收藏
页码:1126 / 1137
页数:12
相关论文
共 50 条
  • [1] Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq
    Zeisel, Amit
    Munoz-Manchado, Ana B.
    Codeluppi, Simone
    Lonnerberg, Peter
    La Manno, Gioele
    Jureus, Anna
    Marques, Sueli
    Munguba, Hermany
    He, Liqun
    Betsholtz, Christer
    Rolny, Charlotte
    Castelo-Branco, Goncalo
    Hjerling-Leffler, Jens
    Linnarsson, Sten
    SCIENCE, 2015, 347 (6226) : 1138 - 1142
  • [2] Functional Heterogeneity of Mouse Prostate Stromal Cells Revealed by Single-Cell RNA-Seq
    Kwon, Oh-Joon
    Zhang, Yiqun
    Li, Yumei
    Wei, Xing
    Zhang, Li
    Chen, Rui
    Creighton, Chad J.
    Xin, Li
    ISCIENCE, 2019, 13 : 328 - +
  • [3] Single-cell RNA-Seq reveals cell heterogeneity and hierarchy within mouse mammary epithelia
    Sun, Heng
    Miao, Zhengqiang
    Zhang, Xin
    Chan, Un In
    Su, Sek Man
    Guo, Sen
    Wong, Chris Koon Ho
    Xu, Xiaoling
    Deng, Chu-Xia
    JOURNAL OF BIOLOGICAL CHEMISTRY, 2018, 293 (22) : 8315 - 8329
  • [4] The Development of Mechanical Allodynia in Diabetic Rats Revealed by Single-Cell RNA-Seq
    Zhou, Han
    Yang, Xiaosheng
    Liao, Chenlong
    Chen, Hongjin
    Wu, Yiwei
    Xie, Binran
    Ma, Fukai
    Zhang, WenChuan
    FRONTIERS IN MOLECULAR NEUROSCIENCE, 2022, 15
  • [5] Single-cell RNA-seq revealed diverse cell types in the mouse placenta at mid-gestation
    Zhou, Xiaobo
    Xu, Yingchun
    Ren, Shengnan
    Liu, Dong
    Yang, Ningjie
    Han, Qian
    Kong, Shuangbo
    Wang, Haibin
    Deng, Wenbo
    Qi, Hongbo
    Lu, Jinhua
    EXPERIMENTAL CELL RESEARCH, 2021, 405 (02)
  • [6] The Advances of Single-Cell RNA-Seq in Kidney Immunology
    Zeng, Honghui
    Yang, Xiaoqiang
    Luo, Siweier
    Zhou, Yiming
    FRONTIERS IN PHYSIOLOGY, 2021, 12
  • [7] Novel cell types and developmental lineages revealed by single-cell RNA-seq analysis of the mouse crista ampullaris
    Wilkerson, Brent A.
    Zebroski, Heather L.
    Finkbeiner, Connor R.
    Chitsazan, Alex D.
    Beach, Kylie E.
    Sen, Nilasha
    Zhang, Renee C.
    Bermingham-McDonogh, Olivia
    ELIFE, 2021, 10
  • [8] Single-cell RNA-seq supports a developmental hierarchy in human oligodendroglioma
    Tirosh, Itay
    Venteicher, Andrew S.
    Hebert, Christine
    Escalante, Leah E. .
    Patel, Anoop P.
    Yizhak, Keren
    Fisher, Jonathan M. .
    Rodman, Christopher
    Mount, Christopher
    Filbin, Mariella G.
    Neftel, Cyril
    Desai, Niyati
    Nyman, Jackson
    Izar, Benjamin
    Luo, Christina C.
    Francis, Joshua M. .
    Patel, Aanand A.
    Onozato, Maristela L.
    Riggi, Nicolo
    Livak, Kenneth J.
    Gennert, Dave
    Satija, Rahul
    Nahed, Brian V. .
    Curry, William T.
    Martuza, Robert L.
    Mylvaganam, Ravindra
    Iafrate, A. John
    Frosch, Matthew P.
    Golub, Todd R.
    Rivera, Miguel N. .
    Getz, Gad
    Rozenblatt-Rosen, Orit
    Cahill, Daniel P.
    Monje, Michelle
    Bernstein, Bradley E. .
    Louis, David N.
    Regev, Aviv
    Suva, Mario L.
    NATURE, 2016, 539 (7628) : 309 - +
  • [9] Single-cell RNA-seq reveals dynamic paracrine control of cellular variation
    Shalek, Alex K.
    Satija, Rahul
    Shuga, Joe
    Trombetta, John J.
    Gennert, Dave
    Lu, Diana
    Chen, Peilin
    Gertner, Rona S.
    Gaublomme, Jellert T.
    Yosef, Nir
    Schwartz, Schraga
    Fowler, Brian
    Weaver, Suzanne
    Wang, Jing
    Wang, Xiaohui
    Ding, Ruihua
    Raychowdhury, Raktima
    Friedman, Nir
    Hacohen, Nir
    Park, Hongkun
    May, Andrew P.
    Regev, Aviv
    NATURE, 2014, 510 (7505) : 363 - +
  • [10] Analysis of Single-Cell RNA-seq Data by Clustering Approaches
    Zhu, Xiaoshu
    Li, Hong-Dong
    Guo, Lilu
    Wu, Fang-Xiang
    Wang, Jianxin
    CURRENT BIOINFORMATICS, 2019, 14 (04) : 314 - 322