Multiscale Structural Engineering of Ni-Doped CoO Nanosheets for Zinc-Air Batteries with High Power Density

被引:164
作者
Li, Yue-Jiao [1 ]
Cui, Lan [1 ]
Da, Peng-Fei [1 ]
Qiu, Kang-Wen [1 ]
Qin, Wen-Jing [2 ]
Hu, Wen-Bin [1 ]
Du, Xi-Wen [1 ]
Davey, Kenneth [3 ]
Ling, Tao [1 ]
Qiao, Shi-Zhang [1 ,3 ]
机构
[1] Tianjin Univ, Sch Mat Sci & Engn, Tianjin Key Lab Composite & Funct Mat, Key Lab Adv Ceram & Machining Technol,Minist Edu, Tianjin 300072, Peoples R China
[2] Tianjin Univ Technol, Sch Mat Sci & Engn, Tianjin 300384, Peoples R China
[3] Univ Adelaide, Sch Chem Engn, Adelaide, SA 5005, Australia
基金
澳大利亚研究理事会; 中国国家自然科学基金;
关键词
electrocatalysis; nanosheets; oxygen reduction reaction; transitional metal oxide; zinc-air batteries; OXYGEN REDUCTION; BIFUNCTIONAL CATHODE; POROUS CARBON; ELECTROCATALYSTS; EVOLUTION; EFFICIENT; GRAPHENE; CATALYST; NANOCRYSTALS; HYBRID;
D O I
10.1002/adma.201804653
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Zinc-air batteries offer a possible solution for large-scale energy storage due to their superhigh theoretical energy density, reliable safety, low cost, and long durability. However, their widespread application is hindered by low power density. Herein, a multiscale structural engineering of Ni-doped CoO nanosheets (NSs) for zinc-air batteries with superior high power density/energy density and durability is reported for the first time. In micro- and nanoscale, robust 2D architecture together with numerous nanopores inside the nanosheets provides an advantageous micro/nanostructured surface for O-2 diffusion and a high electrocatalytic active surface area. In atomic scale, Ni doping significantly enhances the intrinsic oxygen reduction reaction activity per active site. As a result of controlled multiscale structure, the primary zinc-air battery with engineered Ni-doped CoO NSs electrode shows excellent performance with a record-high discharge peak power density of 377 mW cm(-2), and works stable for >400 h at 5mA cm(-2). Rechargeable zinc-air battery based on Ni-doped CoO NSs affords an unprecedented small charge-discharge voltage of 0.63V, outperforming state-of-the-art Pt/C catalyst-based device. Moreover, it is shown that Ni-doped CoO NSs assembled into all-solid-state coin cells can power 17 light-emitting diodes and charge an iPhone 7 mobile phone.
引用
收藏
页数:8
相关论文
共 51 条
[1]   PROJECTOR AUGMENTED-WAVE METHOD [J].
BLOCHL, PE .
PHYSICAL REVIEW B, 1994, 50 (24) :17953-17979
[2]   Atomically Dispersed Iron-Nitrogen Species as Electrocatalysts for Bifunctional Oxygen Evolution and Reduction Reactions [J].
Chen, Pengzuo ;
Zhou, Tianpei ;
Xing, Lili ;
Xu, Kun ;
Tong, Yun ;
Xie, Hui ;
Zhang, Lidong ;
Yan, Wensheng ;
Chu, Wangsheng ;
Wu, Changzheng ;
Xie, Yi .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2017, 56 (02) :610-614
[3]   Ultrathin Co3O4 Layers with Large Contact Area on Carbon Fibers as High-Performance Electrode for Flexible Zinc-Air Battery Integrated with Flexible Display [J].
Chen, Xu ;
Liu, Bin ;
Zhong, Cheng ;
Liu, Zhi ;
Liu, Jie ;
Ma, Lu ;
Deng, Yida ;
Han, Xiaopeng ;
Wu, Tianpin ;
Hu, Wenbin ;
Lu, Jun .
ADVANCED ENERGY MATERIALS, 2017, 7 (18)
[4]   Rapid room-temperature synthesis of nanocrystalline spinels as oxygen reduction and evolution electrocatalysts [J].
Cheng, Fangyi ;
Shen, Jian ;
Peng, Bo ;
Pan, Yuede ;
Tao, Zhanliang ;
Chen, Jun .
NATURE CHEMISTRY, 2011, 3 (01) :79-84
[5]   Realizing large-scale and controllable fabrication of active cobalt oxide nanorod catalysts for zinc-air battery [J].
Da, Pengfei ;
Wu, Mengying ;
Qiu, Kangwen ;
Yan, Dongyang ;
Li, Yuejiao ;
Mao, Jing ;
Dong, Cunku ;
Ling, Tao ;
Qiao, Shizhang .
CHEMICAL ENGINEERING SCIENCE, 2019, 194 :127-133
[6]   Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study [J].
Dudarev, SL ;
Botton, GA ;
Savrasov, SY ;
Humphreys, CJ ;
Sutton, AP .
PHYSICAL REVIEW B, 1998, 57 (03) :1505-1509
[7]   Nitrogen-Doped Carbon Nanotube Arrays with High Electrocatalytic Activity for Oxygen Reduction [J].
Gong, Kuanping ;
Du, Feng ;
Xia, Zhenhai ;
Durstock, Michael ;
Dai, Liming .
SCIENCE, 2009, 323 (5915) :760-764
[8]   Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions [J].
Jiao, Yan ;
Zheng, Yao ;
Jaroniec, Mietek ;
Qiao, Shi Zhang .
CHEMICAL SOCIETY REVIEWS, 2015, 44 (08) :2060-2086
[9]   Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set [J].
Kresse, G ;
Furthmuller, J .
COMPUTATIONAL MATERIALS SCIENCE, 1996, 6 (01) :15-50
[10]   Advanced Extremely Durable 3D Bifunctional Air Electrodes for Rechargeable Zinc-Air Batteries [J].
Lee, Dong Un ;
Choi, Ja-Yeon ;
Feng, Kun ;
Park, Hey Woong ;
Chen, Zhongwei .
ADVANCED ENERGY MATERIALS, 2014, 4 (06)