共 32 条
Oxygen-15 labeled CO2, O2, and CO PET in small animals: evaluation using a 3D-mode microPET scanner and impact of reconstruction algorithms
被引:7
作者:
Horitsugi, Genki
[1
]
Watabe, Tadashi
[1
,3
]
Kanai, Yasukazu
[2
,3
]
Ikeda, Hayato
[1
]
Kato, Hiroki
[1
,3
]
Naka, Sadahiro
[1
]
Ishibashi, Mana
[1
]
Matsunaga, Keiko
[2
,3
]
Isohashi, Kayako
[1
,3
]
Shimosegawa, Eku
[2
,3
]
Hatazawa, Jun
[1
,3
]
机构:
[1] Osaka Univ, Grad Sch Med, Dept Nucl Med & Tracer Kinet, 2-2 Yamadaoka, Suita, Osaka 5650871, Japan
[2] Osaka Univ, Grad Sch Med, Mol Imaging Med, 2-2 Yamadaoka, Suita, Osaka 5650871, Japan
[3] Osaka Univ, Grad Sch Med, Med Imaging Ctr Translat Res, 2-2 Yamadaoka, Suita, Osaka 5650871, Japan
来源:
EJNMMI RESEARCH
|
2017年
/
7卷
关键词:
PET;
O-15;
gas;
Image reconstruction;
Small animal;
Steady-state method;
Quantitative value;
CEREBRAL-BLOOD-FLOW;
POSITRON-EMISSION-TOMOGRAPHY;
OXYGEN-METABOLISM;
PERFORMANCE-CHARACTERISTICS;
3-DIMENSIONAL PET;
INHALATION;
RESOLUTION;
STANDARDS;
FRACTION;
STROKE;
D O I:
10.1186/s13550-017-0335-7
中图分类号:
R8 [特种医学];
R445 [影像诊断学];
学科分类号:
1002 ;
100207 ;
1009 ;
摘要:
Background: Positron emission tomography (PET) studies using O-15-labeled CO2, O-2, and CO have been used in humans to evaluate cerebral blood flow (CBF), the cerebral oxygen extraction fraction (OEF), and the cerebral metabolic rate of oxygen (CMRO2) and cerebral blood volume (CBV), respectively. In preclinical studies, however, PET studies using O-15-labeled gases are not widely performed because of the technical difficulties associated with handling labeled gases with a short half-life. The aims of the present study were to evaluate the scatter fraction using 3D-mode micro-PET for O-15-labeled gas studies and the influence of reconstruction algorithms on quantitative values. Nine male SD rats were studied using the steady state inhalation method for O-15-labeled gases with arterial blood sampling. The resulting PET images were reconstructed using filtered back projection (FBP), ordered-subset expectation maximization (OSEM) 2D, or OSEM 3D followed by maximum a posteriori (OSEM3D-MAP). The quantitative values for each brain region and each reconstruction method were calculated by applying different reconstruction methods. Results: The quantitative values for the whole brain as calculated using FBP were 46.6 +/- 12.5 mL/100 mL/min (CBF), 63.7 +/- 7.2% (OEF), 5.72 +/- 0.34 mL/100 mL/min (CMRO2), and 5.66 +/- 0.34 mL/100 mL (CBV), respectively. The CBF and CMRO2 values were significantly higher when the OSEM2D and OSEM3D-MAP reconstruction methods were used, compared with FBP, whereas the OEF values were significantly lower when reconstructed using OSEM3D-MAP. Conclusions: We evaluated the difference in quantitative values among the reconstruction algorithms using 3D-mode micro-PET. The iterative reconstruction method resulted in significantly higher quantitative values for CBF and CMRO2, compared with the values calculated using the FBP reconstruction method.
引用
收藏
页数:9
相关论文