MOMENTS OF RANDOM MULTIPLICATIVE FUNCTIONS, I: LOW MOMENTS, BETTER THAN SQUAREROOT CANCELLATION, AND CRITICAL MULTIPLICATIVE CHAOS

被引:29
作者
Harper, Adam J. [1 ]
机构
[1] Univ Warwick, Math Inst, Zeeman Bldg, Coventry CV4 7AL, W Midlands, England
基金
美国国家科学基金会;
关键词
D O I
10.1017/fmp.2019.7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We determine the order of magnitude of Ej P n 6 x f.n /j2q, where f.n / is a Steinhaus or Rademacher random multiplicative function, and 0 6 q 6 1. In the Steinhaus case, this is equivalent to determining the order of limT !1 1 T R T 0 j P n 6x n it j2q dt. In particular, we find that Ej P n 6x f.n /j p x =.log log x /1=4. This proves a conjecture of Helson that one should have better than squareroot cancellation in the first moment and disproves counter-conjectures of various other authors. We deduce some consequences for the distribution and large deviations of P n 6x f.n /. The proofs develop a connection between Ej P n 6 x f.n /j2q and the qth moment of a critical, approximately Gaussian, multiplicative chaos and then establish the required estimates for that. We include some general introductory discussion about critical multiplicative chaos to help readers unfamiliar with that area.
引用
收藏
页数:95
相关论文
共 30 条
[1]  
[Anonymous], 2020, Probability and ran- dom processes
[2]   MAXIMA OF A RANDOMIZED RIEMANN ZETA FUNCTION, AND BRANCHING RANDOM WALKS [J].
Arguin, Louis-Pierre ;
Belius, David ;
Harper, Adam J. .
ANNALS OF APPLIED PROBABILITY, 2017, 27 (01) :178-215
[3]   BASIC PROPERTIES OF CRITICAL LOGNORMAL MULTIPLICATIVE CHAOS [J].
Barral, Julien ;
Kupiainen, Antti ;
Nikula, Miika ;
Saksman, Eero ;
Webb, Christian .
ANNALS OF PROBABILITY, 2015, 43 (05) :2205-2249
[4]   An elementary approach to Gaussian multiplicative chaos [J].
Berestycki, Nathanael .
ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2017, 22
[5]   HELSON'S PROBLEM FOR SUMS OF A RANDOM MULTIPLICATIVE FUNCTION [J].
Bondarenko, Andriy ;
Seip, Kristian .
MATHEMATIKA, 2016, 62 (01) :101-110
[6]   Random Multiplicative Functions in Short Intervals [J].
Chatterjee, Sourav ;
Soundararajan, Kannan .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2012, 2012 (03) :479-492
[7]   Renormalization of Critical Gaussian Multiplicative Chaos and KPZ Relation [J].
Duplantier, Bertrand ;
Rhodes, Remi ;
Sheffield, Scott ;
Vargas, Vincent .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2014, 330 (01) :283-330
[8]  
Gut A., 2013, SPRINGER TEXTS STAT, DOI [DOI 10.1007/978-1-4614-4708-5, 10.1007/978-1-4614-4708-5]
[9]  
Halgsz G., 1982, PUBL MATH ORSAY, V83, P74
[10]  
Harper A., 2015, ANAL NUMBER THEORY, P145