SUPER-RESOLUTION OF REMOTE SENSING IMAGES BASED ON TRANSFERRED GENERATIVE ADVERSARIAL NETWORK

被引:0
|
作者
Ma, Wen [1 ,2 ,3 ]
Pan, Zongxu [2 ,3 ]
Guo, Jiayi [1 ,2 ,3 ]
Lei, Bin [2 ,3 ]
机构
[1] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[2] Chinese Acad Sci, Inst Elect, Beijing 100190, Peoples R China
[3] Chinese Acad Sci, Key Lab Technol Geospatial Informat Proc & Appl S, Beijing 100190, Peoples R China
基金
中国国家自然科学基金;
关键词
Remote sensing images; superresolution; generative adversarial network; transfer learning; SUPER RESOLUTION;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Single image super-resolution (SR) has been widely studied in recent years as a crucial technique for remote sensing applications. This paper proposes a SR method for remote sensing images based on a transferred generative adversarial network (TGAN). Different from the previous GAN-based SR approaches, the novelty of our method mainly reflects from two aspects. First, the batch normalization layers are removed to reduce the memory consumption and the computational burden, as well as raising the accuracy. Second, our model is trained in a transfer-learning fashion to cope with the insufficiency of training data, which is the crux of applying deep learning methods to remote sensing applications. The model is firstly trained on an external dataset DIV2K and further fine-tuned with the remote sensing dataset. Our experimental results demonstrate that the proposed method is superior to SRCNN and SRGAN in terms of both the objective evaluation and the subjective perspective.
引用
收藏
页码:1148 / 1151
页数:4
相关论文
共 50 条
  • [21] GENERATIVE-NETWORK BASED MULTIMEDIA SUPER-RESOLUTION FOR UAV REMOTE SENSING
    Turkar, Yash
    Aluckal, Christo
    De, Shaunak
    Turkar, Varsha
    Agarwadkar, Yogesh
    2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 527 - 530
  • [22] Fast and accurate super-resolution of MR images based on lightweight generative adversarial network
    Li, Hangyu
    Xuan, Zuxing
    Zhou, Jianpin
    Hu, Xiyuan
    Yang, Bo
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 82 (02) : 2465 - 2487
  • [23] Fast and accurate super-resolution of MR images based on lightweight generative adversarial network
    Hangyu Li
    Zuxing Xuan
    Jianpin Zhou
    Xiyuan Hu
    Bo Yang
    Multimedia Tools and Applications, 2023, 82 : 2465 - 2487
  • [24] Remote sensing image super-resolution using cascade generative adversarial nets
    Guo, Dongen
    Xia, Ying
    Xu, Liming
    Li, Weisheng
    Luo, Xiaobo
    NEUROCOMPUTING, 2021, 443 : 117 - 130
  • [25] Image Super-Resolution Reconstruction Based on a Generative Adversarial Network
    Wu, Yun
    Lan, Lin
    Long, Huiyun
    Kong, Guangqian
    Duan, Xun
    Xu, Changzhuan
    IEEE ACCESS, 2020, 8 : 215133 - 215144
  • [26] Image super-resolution based on conditional generative adversarial network
    Gao, Hongxia
    Chen, Zhanhong
    Huang, Binyang
    Chen, Jiahe
    Li, Zhifu
    IET IMAGE PROCESSING, 2020, 14 (13) : 3006 - 3013
  • [27] Mars image super-resolution based on generative adversarial network
    Wang, Cong
    Zhang, Yin
    Zhang, Yongqiang
    Tian, Rui
    Ding, Mingli
    Zhang, Yongqiang (yongqiang.zhang.hit@gmail.com); Ding, Mingli (mingli.ding.hit@gmail.com), 1600, Institute of Electrical and Electronics Engineers Inc. (09): : 108889 - 108898
  • [28] Image Super-resolution Reconstructing based on Generative Adversarial Network
    Nan Jing
    Bo Lei
    AI IN OPTICS AND PHOTONICS (AOPC 2019), 2019, 11342
  • [29] Mars Image Super-Resolution Based on Generative Adversarial Network
    Wang, Cong
    Zhang, Yin
    Zhang, Yongqiang
    Tian, Rui
    Ding, Mingli
    IEEE ACCESS, 2021, 9 : 108889 - 108898
  • [30] SWCGAN: Generative Adversarial Network Combining Swin Transformer and CNN for Remote Sensing Image Super-Resolution
    Tu, Jingzhi
    Mei, Gang
    Ma, Zhengjing
    Piccialli, Francesco
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2022, 15 : 5662 - 5673