Estimation of high frequency nutrient concentrations from water quality surrogates using machine learning methods

被引:110
作者
Castrillo, Maria [1 ]
Lopez Garcia, Alvaro [1 ]
机构
[1] Inst Fis Cantabria UC CSIC, Avda Los Castros S-n, Santander 39005, Spain
基金
欧盟地平线“2020”;
关键词
Water monitoring; Water quality; Surrogate parameters; Random forests; Soft-sensors; Machine learning; TOTAL PHOSPHORUS CONCENTRATIONS; SUSPENDED-SOLIDS;
D O I
10.1016/j.watres.2020.115490
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Continuous high frequency water quality monitoring is becoming a critical task to support water management. Despite the advancements in sensor technologies, certain variables cannot be easily and/or economically monitored in-situ and in real time. In these cases, surrogate measures can be used to make estimations by means of data-driven models. In this work, variables that are commonly measured in-situ are used as surrogates to estimate the concentrations of nutrients in a rural catchment and in an urban one, making use of machine learning models, specifically Random Forests. The results are compared with those of linear modelling using the same number of surrogates, obtaining a reduction in the Root Mean Squared Error (RMSE) of up to 60.1%. The profit from including up to seven surrogate sensors was computed, concluding that adding more than 4 and 5 sensors in each of the catchments respectively was not worthy in terms of error improvement. (C) 2020 Elsevier Ltd. All rights reserved.
引用
收藏
页数:10
相关论文
共 23 条
[1]   Characterising phosphorus and nitrate inputs to a rural river using high-frequency concentration-flow relationships [J].
Bowes, M. J. ;
Jarvie, H. P. ;
Halliday, S. J. ;
Skeffington, R. A. ;
Wade, A. J. ;
Loewenthal, M. ;
Gozzard, E. ;
Newman, J. R. ;
Palmer-Felgate, E. J. .
SCIENCE OF THE TOTAL ENVIRONMENT, 2015, 511 :608-620
[2]   Towards the review of the European Union Water Framework Directive: Recommendations for more efficient assessment and management of chemical contamination in European surface water resources [J].
Brack, Werner ;
Dulio, Valeria ;
Agerstrand, Marlene ;
Allan, Ian ;
Altenburger, Rolf ;
Brinkmann, Markus ;
Bunke, Dirk ;
Burgess, Robert M. ;
Cousins, Ian ;
Escher, Beate I. ;
Hernandez, Felix J. ;
Hewitt, L. Mark ;
Hilscherova, Klara ;
Hollender, Juliane ;
Hollert, Henner ;
Kase, Robert ;
Klauer, Bernd ;
Lindim, Claudia ;
Herraez, David Lopez ;
Miege, Cecil ;
Munthe, John ;
O'Toole, Simon ;
Posthuma, Leo ;
Ruedel, Heinz ;
Schaefer, Ralf B. ;
Sengl, Manfred ;
Smedes, Foppe ;
van de Meent, Dik ;
van den Brink, Paul J. ;
van Gils, Jos ;
van Wezel, Annemarie P. ;
Vethaak, A. Dick ;
Vermeirssen, Etienne ;
von der Ohe, Peter C. ;
Vrana, Branislav .
SCIENCE OF THE TOTAL ENVIRONMENT, 2017, 576 :720-737
[3]  
Breiman L., 1984, Classification and Regression Trees, DOI DOI 10.1201/9781315139470
[4]  
Breiman L., 2001, IEEE Trans. Broadcast., V45, P5
[5]   Transforming data into knowledge for improved wastewater treatment operation: A critical review of techniques [J].
Corominas, Ll. ;
Garrido-Baserba, M. ;
Villez, K. ;
Olsson, G. ;
Cortes, U. ;
Poch, M. .
ENVIRONMENTAL MODELLING & SOFTWARE, 2018, 106 :89-103
[6]   Estimation of suspended sediment concentration and yield using linear models, random forests and quantile regression forests [J].
Francke, T. ;
Lopez-Tarazon, J. A. ;
Schroeder, B. .
HYDROLOGICAL PROCESSES, 2008, 22 (25) :4892-4904
[7]   High-frequency water quality monitoring in an urban catchment: hydrochemical dynamics, primary production and implications for the Water Framework Directive [J].
Halliday, Sarah J. ;
Skeffington, Richard A. ;
Wade, Andrew J. ;
Bowes, Michael J. ;
Gozzard, Emma ;
Newman, Jonathan R. ;
Loewenthal, Matthew ;
Palmer-Felgate, Elizabeth J. ;
Jarvie, Helen P. .
HYDROLOGICAL PROCESSES, 2015, 29 (15) :3388-3407
[8]   Surrogate Measures for Providing High Frequency Estimates of Total Suspended Solids and Total Phosphorus Concentrations [J].
Jones, Amber Spackman ;
Stevens, David K. ;
Horsburgh, Jeffery S. ;
Mesner, Nancy O. .
JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION, 2011, 47 (02) :239-253
[9]   An evaluation of high frequency turbidity as a proxy for riverine total phosphorus concentrations [J].
Lannergard, Emma E. ;
Ledesma, Jose L. J. ;
Folster, Jens ;
Futter, Martyn N. .
SCIENCE OF THE TOTAL ENVIRONMENT, 2019, 651 :103-113
[10]   Machine Learning and Deep Learning frameworks and libraries for large-scale data mining: a survey [J].
Nguyen, Giang ;
Dlugolinsky, Stefan ;
Bobak, Martin ;
Viet Tran ;
Lopez Garcia, Alvaro ;
Heredia, Ignacio ;
Malik, Peter ;
Hluchy, Ladislav .
ARTIFICIAL INTELLIGENCE REVIEW, 2019, 52 (01) :77-124