Estimation of high frequency nutrient concentrations from water quality surrogates using machine learning methods

被引:104
作者
Castrillo, Maria [1 ]
Lopez Garcia, Alvaro [1 ]
机构
[1] Inst Fis Cantabria UC CSIC, Avda Los Castros S-n, Santander 39005, Spain
基金
欧盟地平线“2020”;
关键词
Water monitoring; Water quality; Surrogate parameters; Random forests; Soft-sensors; Machine learning; TOTAL PHOSPHORUS CONCENTRATIONS; SUSPENDED-SOLIDS;
D O I
10.1016/j.watres.2020.115490
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Continuous high frequency water quality monitoring is becoming a critical task to support water management. Despite the advancements in sensor technologies, certain variables cannot be easily and/or economically monitored in-situ and in real time. In these cases, surrogate measures can be used to make estimations by means of data-driven models. In this work, variables that are commonly measured in-situ are used as surrogates to estimate the concentrations of nutrients in a rural catchment and in an urban one, making use of machine learning models, specifically Random Forests. The results are compared with those of linear modelling using the same number of surrogates, obtaining a reduction in the Root Mean Squared Error (RMSE) of up to 60.1%. The profit from including up to seven surrogate sensors was computed, concluding that adding more than 4 and 5 sensors in each of the catchments respectively was not worthy in terms of error improvement. (C) 2020 Elsevier Ltd. All rights reserved.
引用
收藏
页数:10
相关论文
共 23 条
  • [1] SmcHD1, containing a structural-maintenance-of-chromosomes hinge domain, has a critical role in X inactivation
    Blewitt, Marnie E.
    Gendrel, Anne-Valerie
    Pang, Zhenyi
    Sparrow, Duncan B.
    Whitelaw, Nadia
    Craig, Jeffrey M.
    Apedaile, Anwyn
    Hilton, Douglas J.
    Dunwoodie, Sally L.
    Brockdorff, Neil
    Kay, Graham F.
    Whitelaw, Emma
    [J]. NATURE GENETICS, 2008, 40 (05) : 663 - 669
  • [2] Characterising phosphorus and nitrate inputs to a rural river using high-frequency concentration-flow relationships
    Bowes, M. J.
    Jarvie, H. P.
    Halliday, S. J.
    Skeffington, R. A.
    Wade, A. J.
    Loewenthal, M.
    Gozzard, E.
    Newman, J. R.
    Palmer-Felgate, E. J.
    [J]. SCIENCE OF THE TOTAL ENVIRONMENT, 2015, 511 : 608 - 620
  • [3] Towards the review of the European Union Water Framework Directive: Recommendations for more efficient assessment and management of chemical contamination in European surface water resources
    Brack, Werner
    Dulio, Valeria
    Agerstrand, Marlene
    Allan, Ian
    Altenburger, Rolf
    Brinkmann, Markus
    Bunke, Dirk
    Burgess, Robert M.
    Cousins, Ian
    Escher, Beate I.
    Hernandez, Felix J.
    Hewitt, L. Mark
    Hilscherova, Klara
    Hollender, Juliane
    Hollert, Henner
    Kase, Robert
    Klauer, Bernd
    Lindim, Claudia
    Herraez, David Lopez
    Miege, Cecil
    Munthe, John
    O'Toole, Simon
    Posthuma, Leo
    Ruedel, Heinz
    Schaefer, Ralf B.
    Sengl, Manfred
    Smedes, Foppe
    van de Meent, Dik
    van den Brink, Paul J.
    van Gils, Jos
    van Wezel, Annemarie P.
    Vethaak, A. Dick
    Vermeirssen, Etienne
    von der Ohe, Peter C.
    Vrana, Branislav
    [J]. SCIENCE OF THE TOTAL ENVIRONMENT, 2017, 576 : 720 - 737
  • [4] Random forests
    Breiman, L
    [J]. MACHINE LEARNING, 2001, 45 (01) : 5 - 32
  • [5] Transforming data into knowledge for improved wastewater treatment operation: A critical review of techniques
    Corominas, Ll.
    Garrido-Baserba, M.
    Villez, K.
    Olsson, G.
    Cortes, U.
    Poch, M.
    [J]. ENVIRONMENTAL MODELLING & SOFTWARE, 2018, 106 : 89 - 103
  • [6] Estimation of suspended sediment concentration and yield using linear models, random forests and quantile regression forests
    Francke, T.
    Lopez-Tarazon, J. A.
    Schroeder, B.
    [J]. HYDROLOGICAL PROCESSES, 2008, 22 (25) : 4892 - 4904
  • [7] High-frequency water quality monitoring in an urban catchment: hydrochemical dynamics, primary production and implications for the Water Framework Directive
    Halliday, Sarah J.
    Skeffington, Richard A.
    Wade, Andrew J.
    Bowes, Michael J.
    Gozzard, Emma
    Newman, Jonathan R.
    Loewenthal, Matthew
    Palmer-Felgate, Elizabeth J.
    Jarvie, Helen P.
    [J]. HYDROLOGICAL PROCESSES, 2015, 29 (15) : 3388 - 3407
  • [8] Surrogate Measures for Providing High Frequency Estimates of Total Suspended Solids and Total Phosphorus Concentrations
    Jones, Amber Spackman
    Stevens, David K.
    Horsburgh, Jeffery S.
    Mesner, Nancy O.
    [J]. JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION, 2011, 47 (02): : 239 - 253
  • [9] An evaluation of high frequency turbidity as a proxy for riverine total phosphorus concentrations
    Lannergard, Emma E.
    Ledesma, Jose L. J.
    Folster, Jens
    Futter, Martyn N.
    [J]. SCIENCE OF THE TOTAL ENVIRONMENT, 2019, 651 : 103 - 113
  • [10] Machine Learning and Deep Learning frameworks and libraries for large-scale data mining: a survey
    Nguyen, Giang
    Dlugolinsky, Stefan
    Bobak, Martin
    Viet Tran
    Lopez Garcia, Alvaro
    Heredia, Ignacio
    Malik, Peter
    Hluchy, Ladislav
    [J]. ARTIFICIAL INTELLIGENCE REVIEW, 2019, 52 (01) : 77 - 124