THE QUASI-NEUTRAL LIMIT IN OPTIMAL SEMICONDUCTOR DESIGN

被引:1
|
作者
Pinnau, Rene [1 ]
Totzeck, Claudia [1 ]
Tse, Oliver [2 ]
机构
[1] TU Kaiserslauten, Dept Math, POB 3049, D-67653 Kaiserslauten, Germany
[2] Tech Univ Eindhoven, Math & Comp Sci, POB 513, Eindhoven, Netherlands
关键词
optimal semiconductor design; drift-diffusion model; nonlinear nonlocal Poisson equation; optimal control; first-order necessary condition; Gamma-convergence; DRIFT-DIFFUSION MODEL; DOPING PROFILE; OPTIMIZATION; DEVICES; EQUATIONS; IMAGES;
D O I
10.1137/15M1051877
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We study the quasi-neutral limit in an optimal semiconductor design problem constrained by a nonlinear, nonlocal Poisson equation modeling the drift-diffusion equations in thermal equilibrium. While a broad knowledge of the asymptotic links between the different models in the semiconductor model hierarchy exists, there are so far no results on the corresponding optimization problems available. Using a variational approach we end up with a bilevel optimization problem, which is thoroughly analyzed. Further, we exploit the concept of Gamma-convergence to perform the quasineutral limit for the minima and minimizers. This justifies the construction of fast optimization algorithms based on the zero space charge approximation of the drift diffusion model. The analytical results are underlined by numerical experiments con firming the feasibility of our approach.
引用
收藏
页码:2603 / 2635
页数:33
相关论文
共 50 条
  • [41] SOME APPLICATIONS OF QUASI-VELOCITIES IN OPTIMAL CONTROL
    Abrunheiro, Ligia
    Camarinha, Margarida
    Carinena, Jose F.
    Clemente-Gallardo, Jesus
    Martinez, Eduardo
    Santos, Patricia
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2011, 8 (04) : 835 - 851
  • [42] Optimal design for quasi-zero power performance of a permanent magnetic suspension system
    Sun, Feng
    Zhou, Ran
    Jin, Junjie
    Li, Qiang
    Xu, Fangchao
    Sun, Xingwei
    Oka, Koichi
    INTERNATIONAL JOURNAL OF APPLIED ELECTROMAGNETICS AND MECHANICS, 2019, 59 (02) : 607 - 616
  • [43] Optimal Control of General Functional-Differential Inclusions of Neutral Type
    Mordukhovich, Boris S.
    Wang, Lianwen
    PROCEEDINGS OF THE 2012 24TH CHINESE CONTROL AND DECISION CONFERENCE (CCDC), 2012, : 68 - 73
  • [44] Optimal Strategies at a Limit Order Market
    Smid, Martin
    PROCEEDINGS OF THE 24TH INTERNATIONAL CONFERENCE ON MATHEMATICAL METHODS IN ECONOMICS 2006, 2006, : 471 - 474
  • [45] Optical anisotropy of semiconductor nanowires beyond the electrostatic limit
    Zhang, J.
    Lutich, A. A.
    Rodriguez-Fernandez, J.
    Susha, A. S.
    Rogach, A. L.
    Jaeckel, F.
    Feldmann, J.
    PHYSICAL REVIEW B, 2010, 82 (15):
  • [46] A Quasi-Monte Carlo Method for Optimal Control Under Uncertainty
    Guth, Philipp A.
    Kaarnioja, Vesa
    Kuo, Frances Y.
    Schillings, Claudia
    Sloan, Ian H.
    SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2021, 9 (02) : 354 - 383
  • [47] OPTIMAL ACTUATOR DESIGN FOR SEMILINEAR SYSTEMS
    Edalatzadeh, M. Sajjad
    Morris, Kirsten A.
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2019, 57 (04) : 2992 - 3020
  • [48] Optimal Control Problems for Hilfer Fractional Neutral Stochastic Evolution Hemivariational Inequalities
    Sivasankar, Sivajiganesan
    Udhayakumar, Ramalingam
    Subramanian, Velmurugan
    AlNemer, Ghada
    Elshenhab, Ahmed M.
    SYMMETRY-BASEL, 2023, 15 (01):
  • [49] Optimal control of conformable fractional neutral stochastic integrodifferential systems with infinite delay
    Chalishajar, Dimplekumar
    Ramkumar, K.
    Ravikumar, K.
    Anguraj, A.
    Jain, S.
    RESULTS IN CONTROL AND OPTIMIZATION, 2023, 13
  • [50] The Fundamental Solution and Its Role in the Optimal Control of Infinite Dimensional Neutral Systems
    Liu, Kai
    APPLIED MATHEMATICS AND OPTIMIZATION, 2009, 60 (01) : 1 - 38