THE QUASI-NEUTRAL LIMIT IN OPTIMAL SEMICONDUCTOR DESIGN

被引:1
|
作者
Pinnau, Rene [1 ]
Totzeck, Claudia [1 ]
Tse, Oliver [2 ]
机构
[1] TU Kaiserslauten, Dept Math, POB 3049, D-67653 Kaiserslauten, Germany
[2] Tech Univ Eindhoven, Math & Comp Sci, POB 513, Eindhoven, Netherlands
关键词
optimal semiconductor design; drift-diffusion model; nonlinear nonlocal Poisson equation; optimal control; first-order necessary condition; Gamma-convergence; DRIFT-DIFFUSION MODEL; DOPING PROFILE; OPTIMIZATION; DEVICES; EQUATIONS; IMAGES;
D O I
10.1137/15M1051877
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We study the quasi-neutral limit in an optimal semiconductor design problem constrained by a nonlinear, nonlocal Poisson equation modeling the drift-diffusion equations in thermal equilibrium. While a broad knowledge of the asymptotic links between the different models in the semiconductor model hierarchy exists, there are so far no results on the corresponding optimization problems available. Using a variational approach we end up with a bilevel optimization problem, which is thoroughly analyzed. Further, we exploit the concept of Gamma-convergence to perform the quasineutral limit for the minima and minimizers. This justifies the construction of fast optimization algorithms based on the zero space charge approximation of the drift diffusion model. The analytical results are underlined by numerical experiments con firming the feasibility of our approach.
引用
收藏
页码:2603 / 2635
页数:33
相关论文
共 50 条
  • [31] Optimal control approach for robust control design of neutral systems
    Lin, Yu-Chen
    Lin, Chun-Liang
    OPTIMAL CONTROL APPLICATIONS & METHODS, 2009, 30 (01) : 87 - 102
  • [32] Optimal Design for the Passive Control of Vibration Based on Limit Cycles
    Rojas, Rafael A.
    Wehrle, Erich
    Vidoni, Renato
    SHOCK AND VIBRATION, 2019, 2019
  • [33] Diffusion limit of a semiconductor Boltzmann-Poisson system
    Masmoudi, Nader
    Tayeb, Mohamed Lazhar
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2007, 38 (06) : 1788 - 1807
  • [34] Michell truss type theories as a Γ-limit of optimal design in linear elasticity
    Olbermann, Heiner
    ADVANCES IN CALCULUS OF VARIATIONS, 2022, 15 (03) : 305 - 322
  • [35] Optimal Design of Bubble Deck Concrete Slabs: Serviceability Limit State
    Gajewski, Tomasz
    Staszak, Natalia
    Garbowski, Tomasz
    MATERIALS, 2023, 16 (14)
  • [36] An Improved Solution for a Low Thrust Quasi - Optimal Geostationary Transfer Design
    Saloglu, Keziban
    Ataalp, Kagan
    Ozkan, Ahmet
    2019 9TH INTERNATIONAL CONFERENCE ON RECENT ADVANCES IN SPACE TECHNOLOGIES (RAST), 2019, : 167 - 171
  • [37] ON-/OFF-STATE DESIGN OF SEMICONDUCTOR DOPING PROFILES
    Burger, Martin
    Pinnau, Rene
    Wolfram, Marie-Therese
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2008, 6 (04) : 1021 - 1041
  • [38] Optimal design of greenfield energy hubs in the context of carbon neutral energy supply
    Zahedmanesh, Arian
    Verbic, Gregor
    Rajarathnam, Gobinath
    Weihs, Gustavo Fimbres
    Shikata, Kentaro
    Matsuda, Naohiko
    Abbas, Ali
    ENERGY, 2024, 305
  • [39] Vacuum solution and quasineutral limit of semiconductor drift-diffusion equation
    Ri, Jinmyong
    Huang, Feimin
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2009, 246 (04) : 1523 - 1538
  • [40] Optimal design for vibration energy harvesters based on quasi-periodic structures
    Dowlati, Shakiba
    Kacem, Najib
    Bouhaddi, Noureddine
    PHYSICA SCRIPTA, 2022, 97 (08)