THE QUASI-NEUTRAL LIMIT IN OPTIMAL SEMICONDUCTOR DESIGN

被引:1
|
作者
Pinnau, Rene [1 ]
Totzeck, Claudia [1 ]
Tse, Oliver [2 ]
机构
[1] TU Kaiserslauten, Dept Math, POB 3049, D-67653 Kaiserslauten, Germany
[2] Tech Univ Eindhoven, Math & Comp Sci, POB 513, Eindhoven, Netherlands
关键词
optimal semiconductor design; drift-diffusion model; nonlinear nonlocal Poisson equation; optimal control; first-order necessary condition; Gamma-convergence; DRIFT-DIFFUSION MODEL; DOPING PROFILE; OPTIMIZATION; DEVICES; EQUATIONS; IMAGES;
D O I
10.1137/15M1051877
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We study the quasi-neutral limit in an optimal semiconductor design problem constrained by a nonlinear, nonlocal Poisson equation modeling the drift-diffusion equations in thermal equilibrium. While a broad knowledge of the asymptotic links between the different models in the semiconductor model hierarchy exists, there are so far no results on the corresponding optimization problems available. Using a variational approach we end up with a bilevel optimization problem, which is thoroughly analyzed. Further, we exploit the concept of Gamma-convergence to perform the quasineutral limit for the minima and minimizers. This justifies the construction of fast optimization algorithms based on the zero space charge approximation of the drift diffusion model. The analytical results are underlined by numerical experiments con firming the feasibility of our approach.
引用
收藏
页码:2603 / 2635
页数:33
相关论文
共 50 条
  • [1] Quasi-Neutral Limit for Euler-Poisson System
    M. Slemrod
    N. Sternberg
    Journal of Nonlinear Science, 2001, 11 : 193 - 209
  • [2] Quasi-neutral limit of Euler-Poisson system of compressible fluids coupled to a magnetic field
    Yang, Jianwei
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2018, 69 (03):
  • [3] Quasi-neutral limit of the full Navier-Stokes-Fourier-Poisson system
    Li, Yong
    Ju, Qiangchang
    Xu, Wen-qing
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2015, 258 (11) : 3661 - 3687
  • [4] Quasi-neutral limit of the full bipolar Euler-Poisson system
    Jiang Song
    Ju QiangChang
    Li HaiLiang
    Li Yong
    SCIENCE CHINA-MATHEMATICS, 2010, 53 (12) : 3099 - 3114
  • [5] Global quasi-neutral limit of Euler Maxwell systems with velocity dissipation
    Peng, Yue-Jun
    Wasiolek, Victor
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 451 (01) : 146 - 174
  • [6] Inviscid Quasi-Neutral Limit of a Navier-Stokes-Poisson-Korteweg System
    Wang, Hongli
    Yang, Jianwei
    MATHEMATICAL MODELLING AND ANALYSIS, 2018, 23 (02) : 205 - 216
  • [7] Quasi-neutral limit and the initial layer problem of the drift-diffusion model
    Wang, Shu
    Jiang, Limin
    ACTA MATHEMATICA SCIENTIA, 2020, 40 (04) : 1152 - 1170
  • [8] QUASI-NEUTRAL LIMIT OF THE TWO-FLUID EULER-POISSON SYSTEM
    Ju, Qiangchang
    Li, Hailiang
    Li, Yong
    Jiang, Song
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2010, 9 (06) : 1577 - 1590
  • [9] THE MIXED LAYER PROBLEM AND QUASI-NEUTRAL LIMIT OF THE DRIFT-DIFFUSION MODEL FOR SEMICONDUCTORS
    Wang, Shu
    Wang, Ke
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2012, 44 (02) : 699 - 717
  • [10] Quasi-neutral limit to the drift-diffusion models for semiconductors with physical contact-insulating boundary conditions
    Wang, Ke
    Wang, Shu
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2010, 249 (12) : 3291 - 3311