Eichler-Shimura isomorphism for complex hyperbolic lattices

被引:1
|
作者
Kim, Inkang [1 ]
Zhang, Genkai [2 ]
机构
[1] KIAS, Sch Math, Heogiro 85, Seoul 130722, South Korea
[2] Gothenburg Univ, Chalmers Univ Technol & Math Sci, Math Sci, SE-41296 Gothenburg, Sweden
关键词
Complex hyperbolic lattice; First cohomology; Eichler-Shimura isomorphism; PROJECTIVE-STRUCTURES; LOCAL RIGIDITY; LIE-GROUPS; SPACE; COHOMOLOGY;
D O I
10.1016/j.geomphys.2017.08.010
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the cohomology group H-1(Gamma, p) of a discrete subgroup Gamma subset of G = SU(n, 1) and the symmetric tensor representation p on S-m(c(n+1)). We give an elementary proof of the Eichler-Shimura isomorphism that harmonic forms H-1(Gamma\ G/K, p) are (0, 1)-forms for the automorphic holomorphic bundle induced by the representation S-m(C-n) of K. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:452 / 460
页数:9
相关论文
共 50 条
  • [31] Lattices in the cohomology of Shimura curves
    Matthew Emerton
    Toby Gee
    David Savitt
    Inventiones mathematicae, 2015, 200 : 1 - 96
  • [32] Lattices in the cohomology of Shimura curves
    Emerton, Matthew
    Gee, Toby
    Savitt, David
    INVENTIONES MATHEMATICAE, 2015, 200 (01) : 1 - 96
  • [33] New Nonarithmetic Complex Hyperbolic Lattices II
    Deraux, Martin
    Parker, John R.
    Paupert, Julien
    MICHIGAN MATHEMATICAL JOURNAL, 2021, 70 (01) : 133 - 205
  • [34] LOCAL QUATERNIONIC RIGIDITY FOR COMPLEX HYPERBOLIC LATTICES
    Kim, Inkang
    Klingler, Bruno
    Pansu, Pierre
    JOURNAL OF THE INSTITUTE OF MATHEMATICS OF JUSSIEU, 2012, 11 (01) : 133 - 159
  • [35] Maximal representations of uniform complex hyperbolic lattices
    Koziarz, Vincent
    Maubon, Julien
    ANNALS OF MATHEMATICS, 2017, 185 (02) : 493 - 540
  • [36] A NOTE ON COMPLEX HYPERBOLIC LATTICES AND STRICT HYPERBOLIZATION
    Zhu, Kejia
    arXiv,
  • [37] SIMPSONS THEORY AND SUPERRIGIDITY OF COMPLEX HYPERBOLIC LATTICES
    REZNIKOV, A
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1995, 320 (09): : 1061 - 1064
  • [38] EICHLER MAPS AND HYPERBOLIC FOURIER EXPANSION
    HIRAMATSU, T
    NAGOYA MATHEMATICAL JOURNAL, 1970, 40 (DEC) : 173 - +
  • [39] New non-arithmetic complex hyperbolic lattices
    Deraux, Martin
    Parker, John R.
    Paupert, Julien
    INVENTIONES MATHEMATICAE, 2016, 203 (03) : 681 - 771
  • [40] Superrigidity of maximal measurable cocycles of complex hyperbolic lattices
    Sarti, F.
    Savini, A.
    MATHEMATISCHE ZEITSCHRIFT, 2022, 300 (01) : 421 - 443