Eichler-Shimura isomorphism for complex hyperbolic lattices

被引:1
作者
Kim, Inkang [1 ]
Zhang, Genkai [2 ]
机构
[1] KIAS, Sch Math, Heogiro 85, Seoul 130722, South Korea
[2] Gothenburg Univ, Chalmers Univ Technol & Math Sci, Math Sci, SE-41296 Gothenburg, Sweden
关键词
Complex hyperbolic lattice; First cohomology; Eichler-Shimura isomorphism; PROJECTIVE-STRUCTURES; LOCAL RIGIDITY; LIE-GROUPS; SPACE; COHOMOLOGY;
D O I
10.1016/j.geomphys.2017.08.010
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the cohomology group H-1(Gamma, p) of a discrete subgroup Gamma subset of G = SU(n, 1) and the symmetric tensor representation p on S-m(c(n+1)). We give an elementary proof of the Eichler-Shimura isomorphism that harmonic forms H-1(Gamma\ G/K, p) are (0, 1)-forms for the automorphic holomorphic bundle induced by the representation S-m(C-n) of K. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:452 / 460
页数:9
相关论文
共 21 条
[1]  
Borel A., 2000, CONTINOUS COHOMOLOGY
[2]   LOCAL RIGIDITY OF DISCRETE-GROUPS ACTING ON COMPLEX HYPERBOLIC SPACE [J].
GOLDMAN, WM ;
MILLSON, JJ .
INVENTIONES MATHEMATICAE, 1987, 88 (03) :495-520
[3]   LIE-GROUPS AND TEICHMULLER SPACE [J].
HITCHIN, NJ .
TOPOLOGY, 1992, 31 (03) :449-473
[4]  
Kim I., 2017, MATH P CAMB IN PRESS
[5]   KAHLER METRIC ON THE SPACE OF CONVEX REAL PROJECTIVE STRUCTURES ON SURFACE [J].
Kim, Inkang ;
Zhang, Genkai .
JOURNAL OF DIFFERENTIAL GEOMETRY, 2017, 106 (01) :127-137
[6]   LOCAL QUATERNIONIC RIGIDITY FOR COMPLEX HYPERBOLIC LATTICES [J].
Kim, Inkang ;
Klingler, Bruno ;
Pansu, Pierre .
JOURNAL OF THE INSTITUTE OF MATHEMATICS OF JUSSIEU, 2012, 11 (01) :133-159
[7]  
Kim I, 2009, J EUR MATH SOC, V11, P1141
[8]   Local rigidity for complex hyperbolic lattices and Hodge theory [J].
Klingler, B. .
INVENTIONES MATHEMATICAE, 2011, 184 (03) :455-498
[10]  
Labourie F, 2007, PURE APPL MATH Q, V3, P1057