QUANTITATIVE CONVERGENCE THEOREMS FOR A CLASS OF BERNSTEIN-DURRMEYER OPERATORS PRESERVING LINEAR FUNCTIONS

被引:23
作者
Gonska, H. [1 ]
Paltanea, R. [2 ]
机构
[1] Univ Duisburg Essen, Duisburg, Germany
[2] Transilvania Univ, Brasov, Romania
关键词
Uniform Convergence; Bernstein Polynomial; Positive Linear Operator; Bernstein Operator; Durrmeyer Operator;
D O I
10.1007/s11253-010-0413-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We supplement recent results on a class of Bernstein-Durrmeyer operators preserving linear functions. This is done by discussing two limiting cases and proving quantitative Voronovskaya-type assertions involving the first-order and second-order moduli of smoothness. The results generalize and improve earlier statements for Bernstein and genuine Bernstein-Durrmeyer operators.
引用
收藏
页码:1061 / 1072
页数:12
相关论文
共 8 条
[1]  
GONSKA H., 1979, THESIS U DUISBURG
[2]  
GONSKA H, CZECH MAT J IN PRESS
[3]  
Gonska H., 2006, J APPL FUNCT ANAL, V1, P403
[4]  
GONSKA H, 2008, P MATH IN S IN PRESS
[5]  
GONSKA H, 2009, 4 NOTES VORONOVSKAYA
[6]  
Gonska H, 2007, STUD U BABES-BOL MAT, V52, P103
[7]  
Paltanea R., 2004, Approximation theory using positive linear operators
[8]  
Pltnea R, 2007, ANN TIBERIU POPOVICI, V5, P109