Combined effect of coarse aggregate and fiber on tensile behavior of ultra-high performance concrete

被引:169
|
作者
Liu, Jianzhong [1 ]
Han, Fangyu [1 ]
Cui, Gong [1 ]
Zhang, Qianqian [1 ]
Lv, Jin [1 ]
Zhang, Lihui [1 ]
Yang, Zhiqian [1 ]
机构
[1] Jiangsu Res Inst Bldg Sci, State Key Lab High Performance Civil Engn Mat, Nanjing 211108, Jiangsu, Peoples R China
关键词
Ultra-high performance concrete; Coarse aggregate; Fiber; Bonding behavior; Tensile behavior; REACTIVE POWDER CONCRETE; REINFORCED CONCRETE; MECHANICAL-PROPERTIES; FLEXURAL BEHAVIOR; SILICA FUME; UHP-FRC; SIZE; DURABILITY;
D O I
10.1016/j.conbuildmat.2016.05.039
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
In this study, combined effect of coarse aggregate and fiber properties on tensile behavior of ultra-high performance concrete (UHPC) was investigated. Four replacement levels of coarse aggregates (0%, 15%, 25%, 35% by volume of mortar) and four types of steel fiber (three micro-fibers with a shape difference and one macro-fiber) were considered. Results showed that replacement level of coarse aggregate has a critical value of 25% and different fiber types act similarly in regard of compressive strength. Coarse aggregate brought impairment to bonding strength and utilization efficiency of fiber, especially for deformed ones. Furthermore, coarse aggregate could be successfully introduced into system of UHPC without impairing its tensile properties at a favorable replacement level (.25%). In addition, phenomenon of strain hardening behaviors of UHPC incorporating coarse aggregate could be triggered by further increasing fiber dosage to larger than 2.5%, however, it was independent of fiber type due to combined effect of coarse aggregate and fiber bridging. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:310 / 318
页数:9
相关论文
共 50 条
  • [41] Hybrid effects of steel fiber and microfiber on the tensile behavior of ultra-high performance concrete
    Kang, Su-Tae
    Choi, Jeong-Il
    Koh, Kyung-Taek
    Lee, Kang Seok
    Lee, Bang Yeon
    COMPOSITE STRUCTURES, 2016, 145 : 37 - 42
  • [42] Improvement effect of fiber alignment on resistance to elevated temperature of ultra-high performance concrete
    Huang, Huanghuang
    Wang, Rui
    Gao, Xiaojian
    COMPOSITES PART B-ENGINEERING, 2019, 177
  • [43] Flexural behavior of ultra-high performance hybrid fiber reinforced concrete at the ambient and elevated temperature
    Li, Ye
    Yang, En-Hua
    Tan, Kang Hai
    CONSTRUCTION AND BUILDING MATERIALS, 2020, 250
  • [44] Static mechanical properties and mechanism of C200 ultra-high performance concrete (UHPC) containing coarse aggregates
    Lv Yujing
    Zhang Wenhua
    Wu Fan
    Wu Peipei
    Zeng Weizhao
    Yang Fenghao
    SCIENCE AND ENGINEERING OF COMPOSITE MATERIALS, 2020, 27 (01) : 186 - 195
  • [45] INFLUENCE OF CHEMICAL TREATMENT ON THE TENSILE PROPERTY OF ULTRA-HIGH PERFORMANCE CONCRETE (UHPC)
    Zhang, Lihui
    Liu, Jianzhong
    Zhang, Qianqian
    Han, Fangyu
    1ST INTERNATIONAL CONFERENCE ON UHPC MATERIALS AND STRUCTURES, 2016, 105 : 304 - 318
  • [46] Tensile Creep Test of Fiber-Reinforced Ultra-High Performance Concrete
    Garas, Victor Y.
    Kahn, Lawrence F.
    Kurtis, Kimberly E.
    JOURNAL OF TESTING AND EVALUATION, 2010, 38 (06) : 674 - 682
  • [47] Ultra-High Performance Concrete: Mechanical Performance, Durability, Sustainability and Implementation Challenges
    Abbas, S.
    Nehdi, M. L.
    Saleem, M. A.
    INTERNATIONAL JOURNAL OF CONCRETE STRUCTURES AND MATERIALS, 2016, 10 (03) : 271 - 295
  • [48] Experimental and multi-scale numerical investigation of ultra-high performance fiber reinforced concrete (UHPFRC) with different coarse aggregate content and fiber volume fraction
    Yu, Jiangjiang
    Zhang, Boshan
    Chen, Weizhen
    He, Jiayuan
    CONSTRUCTION AND BUILDING MATERIALS, 2020, 260
  • [49] Effect of confinement and coarse aggregate on compressive properties of ultra-high strength concrete
    Zhou X.
    Wang Z.
    Harbin Gongye Daxue Xuebao/Journal of Harbin Institute of Technology, 2019, 51 (12): : 144 - 152
  • [50] Bending and shear behavior of ultra-high performance fiber reinforced concrete
    Magureanu, C.
    Sosa, I.
    Negrutiu, C.
    Heghes, B.
    HIGH PERFORMANCE STRUCTURES AND MATERIALS V, 2010, 112 : 79 - 89