Brain CT Image Classification with Deep Neural Networks

被引:14
|
作者
Da, Cheng [1 ]
Zhang, Haixian [2 ]
Sang, Yongsheng [2 ]
机构
[1] Chinese Acad Sci, Inst Automat, Beijing 100190, Peoples R China
[2] Sichuan Univ, Coll Comp Sci, Machine Intelligence Lab, Chengdu 610065, Peoples R China
关键词
Deep neural network; Texture analysis; Gray level co-occurrence matrix (GLCM);
D O I
10.1007/978-3-319-13359-1_50
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
With the development of X-ray, CT, MRI and other medical imaging techniques, doctors and researchers are provided with a large number of medical images for clinical diagnosis. It can largely improves the accuracy and reliability of disease diagnosis. In this paper, the method of brain CT image classification with Deep neural networks is proposed. Deep neural network exploits many layers of non-linear information for classification and pattern analysis. In the most recent literature, deep learning is defined as a kind of representation learning, which involves a hierarchy architecture where higher-level concepts are constructed from lower-level ones. The techniques developed from deep learning, enriched the main research aspects of machine learning and artificial intelligence, have already been impacting a wide range of signal and information processing researches. By using the normal and abnormal brain CT images, texture features are extracted as the characteristic value of each image. Then, deep neural network is used to realize the CT image classification of brain health. Experimental results indicate that the deep neural network have performed well in the CT images classification of brain health. It also shows that the stability of the network increases significantly as the depth of the network increasing.
引用
收藏
页码:653 / 662
页数:10
相关论文
共 50 条
  • [1] Using deep convolutional neural networks with adaptive activation functions for medical CT brain image Classification
    Zahedinasab, Roxana
    Mohseni, Hadis
    2018 25TH IRANIAN CONFERENCE ON BIOMEDICAL ENGINEERING AND 2018 3RD INTERNATIONAL IRANIAN CONFERENCE ON BIOMEDICAL ENGINEERING (ICBME), 2018, : 315 - 320
  • [2] Deep convolutional neural networks with transfer learning for automated brain image classification
    Kaur, Taranjit
    Gandhi, Tapan Kumar
    MACHINE VISION AND APPLICATIONS, 2020, 31 (03)
  • [3] Deep convolutional neural networks with transfer learning for automated brain image classification
    Taranjit Kaur
    Tapan Kumar Gandhi
    Machine Vision and Applications, 2020, 31
  • [4] Auroral Image Classification With Deep Neural Networks
    Kvammen, Andreas
    Wickstrom, Kristoffer
    McKay, Derek
    Partamies, Noora
    JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2020, 125 (10)
  • [5] Deep Convolution Neural Networks for Image Classification
    Kulkarni, Arun D.
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2022, 13 (06) : 18 - 23
  • [6] Representation of Imprecision in Deep Neural Networks for Image Classification
    Zhang, Zuowei
    Liu, Zhunga
    Ning, Liangbo
    Martin, Arnaud
    Xiong, Jiexuan
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2025, 36 (01) : 1199 - 1212
  • [7] Histopathological Image Classification with Deep Convolutional Neural Networks
    Alom, Md Zahangir
    Aspiras, Theus
    Taha, Tarek M.
    Asari, Vijayan K.
    APPLICATIONS OF MACHINE LEARNING, 2019, 11139
  • [8] Evolving Deep Convolutional Neural Networks for Image Classification
    Sun, Yanan
    Xue, Bing
    Zhang, Mengjie
    Yen, Gary G.
    IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2020, 24 (02) : 394 - 407
  • [9] Data Selective Deep Neural Networks For Image Classification
    Mendonca, Marcele O. K.
    Ferreira, Jonathas O.
    Diniz, Paulo S. R.
    29TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO 2021), 2021, : 1376 - 1380
  • [10] Deep Neural Networks for Remote Sensing Image Classification
    Miniello, Giorgia
    La Salandra, Marco
    Vino, Gioacchino
    INTELLIGENT COMPUTING, VOL 2, 2022, 507 : 117 - 128