Predicting post-operative right ventricular failure using video-based deep learning

被引:45
作者
Shad, Rohan [1 ]
Quach, Nicolas [1 ]
Fong, Robyn [1 ]
Kasinpila, Patpilai [1 ]
Bowles, Cayley [1 ]
Castro, Miguel [2 ]
Guha, Ashrith [2 ]
Suarez, Erik E. [3 ]
Jovinge, Stefan [4 ]
Lee, Sangjin [4 ]
Boeve, Theodore [4 ]
Amsallem, Myriam [5 ]
Tang, Xiu [5 ]
Haddad, Francois [5 ]
Shudo, Yasuhiro [1 ]
Woo, Y. Joseph [1 ]
Teuteberg, Jeffrey [5 ,6 ]
Cunningham, John P. [7 ]
Langlotz, Curtis P. [6 ,8 ]
Hiesinger, William [1 ,6 ]
机构
[1] Stanford Univ, Dept Cardiothorac Surg, Stanford, CA 94305 USA
[2] Houston Methodist DeBakey Heart Ctr, Dept Cardiovasc Med, Houston, TX USA
[3] Houston Methodist DeBakey Heart Ctr, Dept Cardiothorac Surg, Houston, TX USA
[4] Spectrum Hlth Grand Rapids, Dept Cardiovasc Surg, Grand Rapids, MI USA
[5] Stanford Univ, Dept Cardiovasc Med, Stanford, CA 94305 USA
[6] Stanford Artificial Intelligence Med Ctr, Stanford, CA 94305 USA
[7] Columbia Univ, Dept Stat, New York, NY USA
[8] Stanford Univ, Dept Radiol & Biomed Informat, Stanford, CA 94305 USA
关键词
MECHANICAL CIRCULATORY SUPPORT; ASSIST DEVICE; HEART-FAILURE; RISK SCORE; IMPLANTATION; OUTCOMES; MOTION; VALIDATION; IMPUTATION; RECIPIENTS;
D O I
10.1038/s41467-021-25503-9
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Despite progressive improvements over the decades, the rich temporally resolved data in an echocardiogram remain underutilized. Human assessments reduce the complex patterns of cardiac wall motion, to a small list of measurements of heart function. All modern echocardiography artificial intelligence (AI) systems are similarly limited by design - automating measurements of the same reductionist metrics rather than utilizing the embedded wealth of data. This underutilization is most evident where clinical decision making is guided by subjective assessments of disease acuity. Predicting the likelihood of developing post-operative right ventricular failure (RV failure) in the setting of mechanical circulatory support is one such example. Here we describe a video AI system trained to predict post-operative RV failure using the full spatiotemporal density of information in pre-operative echocardiography. We achieve an AUC of 0.729, and show that this ML system significantly outperforms a team of human experts at the same task on independent evaluation. The echocardiogram allows for a comprehensive assessment of the cardiac musculature and valves, but its rich temporally resolved data remain underutilized. Here, the authors develop a video AI system trained to predict post-operative right ventricular failure.
引用
收藏
页数:8
相关论文
共 69 条
[51]   Is severe right ventricular failure in left ventricular assist device recipients a risk factor for unsuccessful bridging to transplant and post-transplant mortality [J].
Morgan, JA ;
John, R ;
Lee, BJ ;
Oz, MC ;
Naka, Y .
ANNALS OF THORACIC SURGERY, 2004, 77 (03) :859-863
[52]   Video-based AI for beat-to-beat assessment of cardiac function [J].
Ouyang, David ;
He, Bryan ;
Ghorbani, Amirata ;
Yuan, Neal ;
Ebinger, Joseph ;
Langlotz, Curtis P. ;
Heidenreich, Paul A. ;
Harrington, Robert A. ;
Liang, David H. ;
Ashley, Euan A. ;
Zou, James Y. .
NATURE, 2020, 580 (7802) :252-+
[53]   Tricuspid annular motion as a predictor of severe right ventricular failure after left ventricular assist device implantation [J].
Puwanant, Sarinya ;
Hamilton, Karen K. ;
Klodell, Charles T. ;
Hill, James A. ;
Schofield, Richard S. ;
Cleeton, Timothy S. ;
Pauly, Daniel F. ;
Aranda, Juan M., Jr. .
JOURNAL OF HEART AND LUNG TRANSPLANTATION, 2008, 27 (10) :1102-1107
[54]   AppendiXNet: Deep Learning for Diagnosis of Appendicitis from A Small Dataset of CT Exams Using Video Pretraining [J].
Rajpurkar, Pranav ;
Park, Allison ;
Irvin, Jeremy ;
Chute, Chris ;
Bereket, Michael ;
Mastrodicasa, Domenico ;
Langlotz, Curtis P. ;
Lungren, Matthew P. ;
Ng, Andrew Y. ;
Patel, Bhavik N. .
SCIENTIFIC REPORTS, 2020, 10 (01)
[55]   Deep learning for chest radiograph diagnosis: A retrospective comparison of the CheXNeXt algorithm to practicing radiologists [J].
Rajpurkar, Pranav ;
Irvin, Jeremy ;
Ball, Robyn L. ;
Zhu, Kaylie ;
Yang, Brandon ;
Mehta, Hershel ;
Duan, Tony ;
Ding, Daisy ;
Bagul, Aarti ;
Langlotz, Curtis P. ;
Patel, Bhavik N. ;
Yeom, Kristen W. ;
Shpanskaya, Katie ;
Blankenberg, Francis G. ;
Seekins, Jayne ;
Amrhein, Timothy J. ;
Mong, David A. ;
Halabi, Safwan S. ;
Zucker, Evan J. ;
Ng, Andrew Y. ;
Lungren, Matthew P. .
PLOS MEDICINE, 2018, 15 (11)
[56]   pROC: an open-source package for R and S plus to analyze and compare ROC curves [J].
Robin, Xavier ;
Turck, Natacha ;
Hainard, Alexandre ;
Tiberti, Natalia ;
Lisacek, Frederique ;
Sanchez, Jean-Charles ;
Mueller, Markus .
BMC BIOINFORMATICS, 2011, 12
[57]   Multiple imputation after 18+ years [J].
Rubin, DB .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1996, 91 (434) :473-489
[58]   Guidelines for the Echocardiographic Assessment of the Right Heart in Adults: A Report from the American Society of Echocardiography Endorsed by the European Association of Echocardiography, a registered branch of the European Society of Cardiology, and the Canadian Society of Echocardiography [J].
Rudski, Lawrence G. ;
Lai, Wyman W. ;
Afilalo, Jonathan ;
Hua, Lanqi ;
Handschumacher, Mark D. ;
Chandrasekaran, Krishnaswamy ;
Solomon, Scott D. ;
Louie, Eric K. ;
Schiller, Nelson B. .
JOURNAL OF THE AMERICAN SOCIETY OF ECHOCARDIOGRAPHY, 2010, 23 (07) :685-713
[59]  
Selvaraju RR, 2020, INT J COMPUT VISION, V128, P336, DOI [10.1007/s11263-019-01228-7, 10.1109/ICCV.2017.74]
[60]  
Shad R., **DATA OBJECT**, DOI 10.5281/ZENODO.5161867