Predicting post-operative right ventricular failure using video-based deep learning

被引:45
作者
Shad, Rohan [1 ]
Quach, Nicolas [1 ]
Fong, Robyn [1 ]
Kasinpila, Patpilai [1 ]
Bowles, Cayley [1 ]
Castro, Miguel [2 ]
Guha, Ashrith [2 ]
Suarez, Erik E. [3 ]
Jovinge, Stefan [4 ]
Lee, Sangjin [4 ]
Boeve, Theodore [4 ]
Amsallem, Myriam [5 ]
Tang, Xiu [5 ]
Haddad, Francois [5 ]
Shudo, Yasuhiro [1 ]
Woo, Y. Joseph [1 ]
Teuteberg, Jeffrey [5 ,6 ]
Cunningham, John P. [7 ]
Langlotz, Curtis P. [6 ,8 ]
Hiesinger, William [1 ,6 ]
机构
[1] Stanford Univ, Dept Cardiothorac Surg, Stanford, CA 94305 USA
[2] Houston Methodist DeBakey Heart Ctr, Dept Cardiovasc Med, Houston, TX USA
[3] Houston Methodist DeBakey Heart Ctr, Dept Cardiothorac Surg, Houston, TX USA
[4] Spectrum Hlth Grand Rapids, Dept Cardiovasc Surg, Grand Rapids, MI USA
[5] Stanford Univ, Dept Cardiovasc Med, Stanford, CA 94305 USA
[6] Stanford Artificial Intelligence Med Ctr, Stanford, CA 94305 USA
[7] Columbia Univ, Dept Stat, New York, NY USA
[8] Stanford Univ, Dept Radiol & Biomed Informat, Stanford, CA 94305 USA
关键词
MECHANICAL CIRCULATORY SUPPORT; ASSIST DEVICE; HEART-FAILURE; RISK SCORE; IMPLANTATION; OUTCOMES; MOTION; VALIDATION; IMPUTATION; RECIPIENTS;
D O I
10.1038/s41467-021-25503-9
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Despite progressive improvements over the decades, the rich temporally resolved data in an echocardiogram remain underutilized. Human assessments reduce the complex patterns of cardiac wall motion, to a small list of measurements of heart function. All modern echocardiography artificial intelligence (AI) systems are similarly limited by design - automating measurements of the same reductionist metrics rather than utilizing the embedded wealth of data. This underutilization is most evident where clinical decision making is guided by subjective assessments of disease acuity. Predicting the likelihood of developing post-operative right ventricular failure (RV failure) in the setting of mechanical circulatory support is one such example. Here we describe a video AI system trained to predict post-operative RV failure using the full spatiotemporal density of information in pre-operative echocardiography. We achieve an AUC of 0.729, and show that this ML system significantly outperforms a team of human experts at the same task on independent evaluation. The echocardiogram allows for a comprehensive assessment of the cardiac musculature and valves, but its rich temporally resolved data remain underutilized. Here, the authors develop a video AI system trained to predict post-operative right ventricular failure.
引用
收藏
页数:8
相关论文
共 69 条
[1]  
Alber M, 2019, J MACH LEARN RES, V20
[2]   Right ventricular load adaptability metrics in patients undergoing left ventricular assist device implantation [J].
Amsallem, Myriam ;
Aymami, Marie ;
Hiesinger, William ;
Zeigler, Sanford ;
Moneghetti, Kegan ;
Marques, Michael ;
Teuteberg, Jeffrey ;
Ha, Richard ;
Banerjee, Dipanjan ;
Haddad, Francois .
JOURNAL OF THORACIC AND CARDIOVASCULAR SURGERY, 2019, 157 (03) :1023-+
[3]   Randomized, double-blind trial of inhaled nitric oxide in LVAD recipients with pulmonary hypertension [J].
Argenziano, M ;
Choudhri, AF ;
Moazami, N ;
Rose, EA ;
Smith, CR ;
Levin, HR ;
Smerling, AJ ;
Oz, MC .
ANNALS OF THORACIC SURGERY, 1998, 65 (02) :340-344
[4]   Automated Echocardiographic Quantification of Left Ventricular Ejection Fraction Without Volume Measurements Using a Machine Learning Algorithm Mimicking a Human Expert [J].
Asch, Federico M. ;
Poilvert, Nicolas ;
Abraham, Theodore ;
Jankowski, Madeline ;
Cleve, Jayne ;
Adams, Michael ;
Romano, Nathanael ;
Hong, Ha ;
Mor-Avi, Victor ;
Martin, Randolph P. ;
Lang, Roberto M. .
CIRCULATION-CARDIOVASCULAR IMAGING, 2019, 12 (09)
[5]   Predicting Right Ventricular Failure in the Modern, Continuous Flow Left Ventricular Assist Device Era [J].
Atluri, Pavan ;
Goldstone, Andrew B. ;
Fairman, Alex S. ;
MacArthur, John W. ;
Shudo, Yasuhiro ;
Cohen, Jeffrey E. ;
Acker, Alexandra L. ;
Hiesinger, William ;
Howard, Jessica L. ;
Acker, Michael A. ;
Woo, Y. Joseph .
ANNALS OF THORACIC SURGERY, 2013, 96 (03) :857-864
[6]   An artificial intelligence-enabled ECG algorithm for the identification of patients with atrial fibrillation during sinus rhythm: a retrospective analysis of outcome prediction [J].
Attia, Zachi, I ;
Noseworthy, Peter A. ;
Lopez-Jimenez, Francisco ;
Asirvatham, Samuel J. ;
Deshmukh, Abhishek J. ;
Gersh, Bernard J. ;
Carter, Rickey E. ;
Yao, Xiaoxi ;
Rabinstein, Alejandro A. ;
Erickson, Brad J. ;
Kapa, Suraj ;
Friedman, Paul A. .
LANCET, 2019, 394 (10201) :861-867
[7]   The Incremental Value of Right Ventricular Size and Strain in the Risk Assessment of Right Heart Failure Post - Left Ventricular Assist Device Implantation [J].
Aymami, Marie ;
Amsallem, Myriam ;
Adams, Jackson ;
Sallam, Karim ;
Moneghetti, Kegan ;
Wheeler, Matthew ;
Hiesinger, William ;
Teuteberg, Jeffrey ;
Weisshaar, Dana ;
Verhoye, Jean-Philippe ;
Woo, Y. Joseph ;
Ha, Richard ;
Haddad, Francois ;
Banerjee, Dipanjan .
JOURNAL OF CARDIAC FAILURE, 2018, 24 (12) :823-832
[8]  
Benjamin EJ., 2017, CIRCULATION, V135, P146, DOI [10.1161/CIR.0000000000000485, DOI 10.1161/CIR.0000000000000491]
[9]   Acquired right ventricular dysfunction [J].
Bleeker, GB ;
Steendijk, P ;
Holman, ER ;
Yu, CM ;
Breithardt, OA ;
Kaandorp, TAM ;
Schalij, MJ ;
van der Wall, EE ;
Bax, JJ ;
Nihoyannopoulos, P .
HEART, 2006, 92 :I14-I18
[10]   Emerging Properties in Self-Supervised Vision Transformers [J].
Caron, Mathilde ;
Touvron, Hugo ;
Misra, Ishan ;
Jegou, Herve ;
Mairal, Julien ;
Bojanowski, Piotr ;
Joulin, Armand .
2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, :9630-9640