In situ high-pressure study of FeP: Implications for planetary cores

被引:23
|
作者
Gu, Tingting [1 ,2 ]
Wu, Xiang [1 ,2 ]
Qin, Shan [1 ,2 ]
Dubrovinsky, Leonid [3 ]
机构
[1] Peking Univ, MOE, Key Lab Orogen Belts & Crustal Evolut, Beijing 100871, Peoples R China
[2] Peking Univ, Sch Earth & Space Sci, Beijing 100871, Peoples R China
[3] Univ Bayreuth, Bayer Geoinst, D-95440 Bayreuth, Germany
基金
中国国家自然科学基金;
关键词
Light element; Planetary cores; MnP-type structure; High pressure; X-ray diffraction; Mossbauer spectroscopy; EQUATION-OF-STATE; HIGH-TEMPERATURE; INTERNAL STRUCTURE; ELECTRONIC STATES; CRYSTAL-STRUCTURE; EARTHS CORE; PHASE; IRON; DENSITY; MARS;
D O I
10.1016/j.pepi.2010.11.004
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
with MnP-type structure is isostructural with high-pressure FeS polymorphs (both post-troilite FeS and FeS VI), which are believed to exist in planetary cores. Due to similar PTX phase diagrams of binary Fe-P and Fe-S, phosphorus can incorporate with iron-sulfur at planetary core conditions. To understand such substitution and the high-pressure behavior of FeP, we investigate the structural stability of FeP up to 15.6 GPa and 1800 +/- 200 K by combined in situ powder X-ray diffraction and Mossbauer spectroscopy. Our experimental results show that FeP remains the MnP-type structure throughout the PT range covered. Isothermal equation of state of FeP is obtained with V-0 of 92.91(8)angstrom(3), B-0 of 205(7) GPa, and B'(0) of 4. The shortest axis of the MnP-type FeP cell, the b-axis, is the most compressible, due to the soft edge-sharing octahedra along the b-axis. Mossbauer results show that no electronic structure changes occur up to 15.6 GPa, but indicate decreasing distortion of FeP6 octahedron with pressure increasing. The behavior of FeP is quite different from that of FeS under high pressure and high temperature, suggesting that phosphorus will have a significant impact on stability and electronic properties of FeS within terrestrial planet cores. Crown Copyright (C) 2010 Published by Elsevier By. All rights reserved.
引用
收藏
页码:154 / 159
页数:6
相关论文
共 50 条
  • [21] The high-pressure elastic properties of celestine and the high-pressure behavior of barite-type sulphates
    Kuang, Yunqian
    Xu, Jingui
    Zhao, Dongyu
    Fan, Dawei
    Li, Xiaodong
    Zhou, Wenge
    Xie, Hongsen
    HIGH TEMPERATURES-HIGH PRESSURES, 2017, 46 (06) : 481 - 495
  • [22] In situ Raman spectroscopy for the study of high-pressure reactions
    Kessler, W
    Luft, G
    Zeiss, W
    BERICHTE DER BUNSEN-GESELLSCHAFT-PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 1997, 101 (04): : 698 - 702
  • [23] In situ high-pressure synchrotron X-ray diffraction study of the structural stability in NdVO4 and LaVO4
    Errandonea, D.
    Popescu, C.
    Achary, S. N.
    Tyagi, A. K.
    Bettinelli, M.
    MATERIALS RESEARCH BULLETIN, 2014, 50 : 279 - 284
  • [24] An in situ high-pressure X-ray diffraction experiment on hydroxyapophyllite
    范大伟
    魏舒怡
    谢鸿森
    ChinesePhysicsB, 2013, 22 (01) : 167 - 170
  • [25] An in situ high-pressure X-ray diffraction experiment on hydroxyapophyllite
    Fan Da-Wei
    Wei Shu-Yi
    Xie Hong-Sen
    CHINESE PHYSICS B, 2013, 22 (01)
  • [26] High-pressure phase transition of bismuth
    Ono, Shigeaki
    HIGH PRESSURE RESEARCH, 2018, 38 (04) : 414 - 421
  • [27] Low reactivity of stoichiometric FeS with hydrogen at high-pressure and high-temperature conditions
    Takano, Masahiro
    Kagi, Hiroyuki
    Mori, Yuichiro
    Aoki, Katsutoshi
    Kakizawa, Sho
    Sano-Furukawa, Asami
    Iizuka-Oku, Riko
    Tsuchiya, Taku
    JOURNAL OF MINERALOGICAL AND PETROLOGICAL SCIENCES, 2024, 119 (01)
  • [28] Ab initio study of structural, elastic and thermodynamic properties of Fe3S at high pressure: Implications for planetary cores
    Valencia, Karen
    De Moya, Aldemar
    Morard, Guillaume
    Allan, Neil L.
    Pinilla, Carlos
    AMERICAN MINERALOGIST, 2022, 107 (02) : 248 - 256
  • [29] High-pressure study of dravite tourmaline: Insights into the accommodating nature of the tourmaline structure
    O'Bannon, Earl, III
    Beavers, Christine M.
    Kunz, Martin
    Williams, Quentin
    AMERICAN MINERALOGIST, 2018, 103 (10) : 1622 - 1633
  • [30] Back-transformation processes in high-pressure minerals: implications for planetary collisions and diamond transportation from the deep Earth
    Kubo, Tomoaki
    Kamura, Ko
    Imamura, Masahiro
    Tange, Yoshinori
    Higo, Yuji
    Miyahara, Masaaki
    PROGRESS IN EARTH AND PLANETARY SCIENCE, 2022, 9 (01)