ORBITALLY SYMMETRIC SYSTEMS WITH APPLICATIONS TO PLANAR CENTERS

被引:4
作者
Bastos, Jefferson L. R. [1 ]
Buzzi, Claudio A. [1 ]
Torregrosa, Joan [2 ,3 ]
机构
[1] Univ Estadual Paulista, Dept Matemat, BR-15054000 Sao Jose Do Rio Preto, Brazil
[2] Univ Autonoma Barcelona, Dept Matemat, Barcelona 08193, Spain
[3] Ctr Recerca Matemat, Campus Bellaterra, Barcelona 08193, Spain
基金
欧盟地平线“2020”; 巴西圣保罗研究基金会;
关键词
Symmetry; reversibility; equivariance; involution; centers; local cyclicity; limit cycles; LOCAL CYCLICITY; LOWER BOUNDS; BIFURCATION;
D O I
10.3934/cpaa.2021107
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present a generalization of the most usual symmetries in differential equations known as the time-reversibility and the equivariance ones. We check that the typical properties are also valid for the new definition that unifies both. With it, we are able to present new families of planar polynomial vector fields having equilibrium points of center type. Moreover, we provide the highest lower bound for the local cyclicity of an equilibrium point of polynomial vector fields of degree 6, M(6) >= 48.
引用
收藏
页码:3301 / 3329
页数:29
相关论文
共 34 条
[1]   Quasi-homogeneous linearization of degenerate vector fields [J].
Algaba, A. ;
Garcia, C. ;
Reyes, M. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2020, 483 (02)
[2]  
Arnol'd V.I., 1986, Nonlinear Phenomena in Plasma Physics and Hydrodynamics, P31
[3]  
Arnol'd V.I., 1984, Nonlinear and turbulent processes in physics, Vol. 3 (Kiev, V3, P1161
[4]  
Bautin NN., 1954, Am. Math. Soc. Translation, V1954, P19
[5]  
Birkhoff G.D., 1915, REND CIRC MATEM PALE, V39, P265, DOI DOI 10.1007/BF03015982
[6]   On the periodic motions of dynamical systems [J].
Birkhoff, GD .
ACTA MATHEMATICA, 1927, 50 (01) :359-379
[7]   BIFURCATION OF CRITICAL PERIODS FOR PLANE VECTOR-FIELDS [J].
CHICONE, C ;
JACOBS, M .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1989, 312 (02) :433-486
[8]   BIFURCATION OF LIMIT-CYCLES FROM QUADRATIC ISOCHRONES [J].
CHICONE, C ;
JACOBS, M .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1991, 91 (02) :268-326
[9]  
Christopher C, 2005, TRENDS MATH, P23
[10]   On general algebraic mechanisms for producing centers in polynomial differential systems [J].
Christopher, Colin ;
Schlomiuk, Dana .
JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, 2008, 3 (02) :331-351