Exact solitary wave and soliton solutions of the generalized fifth order KdV equation

被引:35
作者
Li, ZB [1 ]
Pan, SQ
机构
[1] E China Normal Univ, Dept Comp Sci, Shanghai 200062, Peoples R China
[2] Lanzhou Univ, Dept Comp Sci, Lanzhou 730000, Peoples R China
关键词
fifth order KdV equation; solitary wave; solitary soliton;
D O I
10.7498/aps.50.402
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
With the aid of Wu Wen-jun characteristic-set method in nonlinear algebraic equations-solving, and using the symbolic manipulation system, the exact solitary wave and soliton solutions to a class of fifth-order nonlinear evolution equation with general coefficients are obtained, which modifies and perfects the known results.
引用
收藏
页码:402 / 405
页数:4
相关论文
共 9 条
[1]   NEW HIERARCHY OF KORTEWEG-DEVRIES EQUATIONS [J].
CAUDREY, PJ ;
DODD, RK ;
GIBBON, JD .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1976, 351 (1666) :407-422
[2]   LINK BETWEEN SOLITARY WAVES AND PROJECTIVE RICCATI-EQUATIONS [J].
CONTE, R ;
MUSETTE, M .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1992, 25 (21) :5609-5623
[3]  
KAUP DJ, 1980, STUD APPL MATH, V62, P189
[5]  
LI ZB, 1993, J PHYS A-MATH GEN, V26, P6027, DOI 10.1088/0305-4470/26/21/039
[6]   METHOD FOR FINDING N-SOLITON SOLUTIONS OF KDV EQUATION AND KDV LIKE EQUATION [J].
SAWADA, K ;
KOTERA, T .
PROGRESS OF THEORETICAL PHYSICS, 1974, 51 (05) :1355-1367
[7]  
SHI H, 1998, INTRO MATH MECH
[8]  
XU BZ, 1998, ACTA PHYS SINICA, V47, P1946
[9]  
李志斌, 1997, [数学物理学报. A辑, Acta Mathematica Scientia], V17, P81