Sparse tensor dimensionality reduction with application to clustering of functional connectivity

被引:1
|
作者
Frusque, Gaetan [1 ]
Jung, Julien [2 ,3 ]
Borgnat, Pierre [4 ]
Goncalves, Paulo [1 ]
机构
[1] Univ Lyon, UCB Lyon 1, INRIA, ENS Lyon,LIP,CNRS,UMR 5668, F-69342 Lyon, France
[2] CNRS, INSERM, Neuro Hosp, Funct Neurol & Epileptol Dept,HCL, Lyon, France
[3] CNRS, INSERM, Lyon Neurosc Res Cent, Lyon, France
[4] Univ Lyon, UCB Lyon 1, ENS Lyon, CNRS,Lab Phys, F-69342 Lyon, France
来源
WAVELETS AND SPARSITY XVIII | 2019年 / 11138卷
关键词
dynamic networks; graph decomposition; clustering; dimensionality reduction; sparsity; tensor decompositions; HOOI; functional connectivity; iEEG;
D O I
10.1117/12.2529595
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Functional connectivity (FC) is a graph-like data structure commonly used by neuroscientists to study the dynamic behaviour of the brain activity. However, these analyses rapidly become complex and time-consuming. In this work, we present complementary empirical results on two tensor decomposition previously proposed named modified High Order Orthogonal Iteration (mHOOI) and High Order sparse Singular Value Decomposition (HOsSVD). These decompositions associated to k-means were shown to be useful for the study of multi trial functional connectivity dataset.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Multiplex Network Inference With Sparse Tensor Decomposition for Functional Connectivity
    Frusque, Gaetan
    Jung, Julien
    Borgnat, Pierre
    Goncalves, Paulo
    IEEE TRANSACTIONS ON SIGNAL AND INFORMATION PROCESSING OVER NETWORKS, 2020, 6 : 316 - 328
  • [2] Sparse Clustering Algorithm Based on Multi-Domain Dimensionality Reduction Autoencoder
    Kang, Yu
    Liu, Erwei
    Zou, Kaichi
    Wang, Xiuyun
    Zhang, Huaqing
    MATHEMATICS, 2024, 12 (10)
  • [3] Patent Document Clustering Using Dimensionality Reduction
    Girthana, K.
    Swamynathan, S.
    PROGRESS IN ADVANCED COMPUTING AND INTELLIGENT ENGINEERING, VOL 2, 2018, 564 : 167 - 176
  • [4] Consensus Clustering for Dimensionality Reduction
    Rani, D. Sandhya
    Rani, T. Sobha
    Bhavani, S. Durga
    2014 SEVENTH INTERNATIONAL CONFERENCE ON CONTEMPORARY COMPUTING (IC3), 2014, : 148 - 153
  • [5] Nonlinear dimensionality reduction for clustering
    Tasoulis, Sotiris
    Pavlidis, Nicos G.
    Roos, Teemu
    PATTERN RECOGNITION, 2020, 107 (107)
  • [6] A Tensor Approximation Approach to Dimensionality Reduction
    Hongcheng Wang
    Narendra Ahuja
    International Journal of Computer Vision, 2008, 76 : 217 - 229
  • [7] A tensor approximation approach to dimensionality reduction
    Wang, Hongcheng
    Ahuja, Narendra
    INTERNATIONAL JOURNAL OF COMPUTER VISION, 2008, 76 (03) : 217 - 229
  • [8] Patch Tensor-Based Sparse and Low-Rank Graph for HyperspectralImages Dimensionality Reduction
    An, Jinliang
    Zhang, Xiangrong
    Zhou, Huiyu
    Feng, Jie
    Jiao, Licheng
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2018, 11 (07) : 2513 - 2527
  • [9] Application of Clustering and Dimensionality Reduction Methods for Finding Patterns on Supraharmonics Data
    Espin-Delgado, Angela
    Sutaria, Jil
    de Oliveira, Roger Alves
    Ronnberg, Sarah
    2022 20TH INTERNATIONAL CONFERENCE ON HARMONICS & QUALITY OF POWER (ICHQP 2022), 2022,
  • [10] Functional Connectivity Analysis of Cognitive Reappraisal Using Sparse Spectral Clustering Method
    Zou, Ling
    Xu, Yi
    Jiang, Zhongyi
    Jiao, Zhuqing
    Pan, Changjie
    Zhou, Renlai
    ADVANCES IN COGNITIVE NEURODYNAMICS (V), 2016, : 291 - 297