Use of Hyperspectral Image Data Outperforms Vegetation Indices in Prediction of Maize Yield

被引:58
作者
Aguate, Fernando M. [1 ]
Trachsel, Samuel [2 ]
Gonzalez Perez, Lorena [3 ]
Burgueno, Juan [4 ]
Crossa, Jose [4 ]
Balzarini, Monica [1 ]
Gouache, David [5 ]
Bogard, Matthieu [5 ]
de los Campos, Gustavo [6 ]
机构
[1] Univ Nacl Cordoba, CONICET, Fac Ciencias Agr, Ave Valparaiso S-N Cc 509, RA-5000 Cordoba, Argentina
[2] Int Maize & Wheat Improvement Ctr CIMMYT, Global Maize Program Physiol, Carretera Mexico Veracruz,Km 45, Texcoco 56237, Estado De Mexic, Mexico
[3] Sustainable Intensificat Program, Carretera Dr Norman E Borlaug Km 12, Obregon 85208, Sonora, Mexico
[4] CIMMYT, Biometr & Stat Unit, Mexico City, DF, Mexico
[5] Arvalis Inst Vegetal, 6 Chemin Cote Vieille, F-31450 Baziege, France
[6] Michigan State Univ, Dept Epidemiol & Biostat, 909 Fee Rd, E Lansing, MI 48824 USA
关键词
GRAIN-YIELD; SPECTRAL REFLECTANCE; CANOPY TEMPERATURE; REGRESSION-MODELS; RIDGE-REGRESSION; STRESS TOLERANCE; PLANT-RESPONSES; WATER REGIMES; GROWTH-STAGES; ZEA-MAYS;
D O I
10.2135/cropsci2017.01.0007
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
Hyperspectral cameras can provide reflectance data at hundreds of wavelengths. This information can be used to derive vegetation indices (VIs) that are correlated with agronomic and physiological traits. However, the data generated by hyperspectral cameras are richer than what can be summarized in a VI. Therefore, in this study, we examined whether prediction equations using hyperspectral image data can lead to better predictive performance for grain yield than what can be achieved using VIs. For hyperspectral prediction equations, we considered three estimation methods: ordinary least squares, partial least squares (a dimension reduction method), and a Bayesian shrinkage and variable selection procedure. We also examined the benefits of combining reflectance data collected at different time points. Data were generated by CIMMYT in 11 maize (Zea mays L.) yield trials conducted in 2014 under heat and drought stress. Our results indicate that using data from 62 bands leads to higher prediction accuracy than what can be achieved using individual VIs. Overall, the shrinkage and variable selection method was the best-performing one. Among the models using data from a single time point, the one using reflectance collected at 28 d after flowering gave the highest prediction accuracy. Combining image data collected at multiple time points led to an increase in prediction accuracy compared with using single-time-point data.
引用
收藏
页码:2517 / 2524
页数:8
相关论文
共 39 条
[1]   Development and evaluation of a field-based high-throughput phenotyping platform [J].
Andrade-Sanchez, Pedro ;
Gore, Michael A. ;
Heun, John T. ;
Thorp, Kelly R. ;
Carmo-Silva, A. Elizabete ;
French, Andrew N. ;
Salvucci, Michael E. ;
White, Jeffrey W. .
FUNCTIONAL PLANT BIOLOGY, 2014, 41 (01) :68-79
[2]   Plant breeding and drought in C3 cereals:: What should we breed for? [J].
Araus, JL ;
Slafer, GA ;
Reynolds, MP ;
Royo, C .
ANNALS OF BOTANY, 2002, 89 :925-940
[3]   Spectral reflectance to estimate genetic variation for in-season biomass, leaf chlorophyll, and canopy temperature in wheat [J].
Babar, MA ;
Reynolds, MP ;
Van Ginkel, M ;
Klatt, AR ;
Raun, WR ;
Stone, ML .
CROP SCIENCE, 2006, 46 (03) :1046-1057
[4]  
Bellman R. E., 1957, Dynamic programming. Princeton landmarks in mathematics
[5]   High-throughput Phenotyping and Genomic Selection: The Frontiers of Crop Breeding Converge [J].
Cabrera-Bosquet, Llorenc ;
Crossa, Jose ;
von Zitzewitz, Jarislav ;
Dolors Serret, Maria ;
Luis Araus, Jose .
JOURNAL OF INTEGRATIVE PLANT BIOLOGY, 2012, 54 (05) :312-320
[6]   Assessing biophysical variable parameters of bean crop with hyperspectral measurements [J].
Camara Monteiro, Priscylla Ferraz ;
Angulo Filho, Rubens ;
Xavier, Alexandre Candido ;
Camara Monteiro, Rodrigo Otavio .
SCIENTIA AGRICOLA, 2012, 69 (02) :87-94
[7]  
Dash J., 2004, P MERIS US WORKSH FR, P5403
[8]   Whole-Genome Regression and Prediction Methods Applied to Plant and Animal Breeding [J].
de los Campos, Gustavo ;
Hickey, John M. ;
Pong-Wong, Ricardo ;
Daetwyler, Hans D. ;
Calus, Mario P. L. .
GENETICS, 2013, 193 (02) :327-+
[9]   Bayesian regression models outperform partial least squares methods for predicting milk components and technological properties using infrared spectral data [J].
Ferragina, A. ;
de los Campos, G. ;
Vazquez, A. I. ;
Cecchinato, A. ;
Bittante, G. .
JOURNAL OF DAIRY SCIENCE, 2015, 98 (11) :8133-8151
[10]   Future Scenarios for Plant Phenotyping [J].
Fiorani, Fabio ;
Schurr, Ulrich .
ANNUAL REVIEW OF PLANT BIOLOGY, VOL 64, 2013, 64 :267-291