Identifying Patients With Delirium Based on Unstructured Clinical Notes: Observational Study

被引:8
作者
Ge, Wendong [1 ]
Alabsi, Haitham [1 ]
Jain, Aayushee [1 ]
Ye, Elissa [1 ]
Sun, Haoqi [1 ]
Fernandes, Marta [1 ]
Magdamo, Colin [1 ]
Tesh, Ryan A. [1 ]
Collens, Sarah, I [1 ]
Newhouse, Amy [1 ]
Moura, Lidia M. V. R. [1 ]
Zafar, Sahar [1 ]
Hsu, John [1 ]
Akeju, Oluwaseun [1 ]
Robbins, Gregory K. [1 ]
Mukerji, Shibani S. [1 ]
Das, Sudeshna [1 ]
Westover, M. Brandon [1 ]
机构
[1] Massachusetts Gen Hosp, 50 Staniford St, Boston, MA 02114 USA
基金
美国国家卫生研究院;
关键词
delirium; electronic health records; clinical notes; machine learning; natural language processing;
D O I
10.2196/33834
中图分类号
R19 [保健组织与事业(卫生事业管理)];
学科分类号
摘要
Background: Delirium in hospitalized patients is a syndrome of acute brain dysfunction. Diagnostic (International Classification of Diseases [ICD]) codes are often used in studies using electronic health records (EHRs), but they are inaccurate. Objective: We sought to develop a more accurate method using natural language processing (NLP) to detect delirium episodes on the basis of unstructured clinical notes. Methods: We collected 1.5 million notes from >10,000 patients from among 9 hospitals. Seven experts iteratively labeled 200,471 sentences. Using these, we trained three NLP classifiers: Support Vector Machine, Recurrent Neural Networks, and Transformer. Testing was performed using an external data set. We also evaluated associations with delirium billing (ICD) codes, medications, orders for restraints and sitters, direct assessments (Confusion Assessment Method [CAM] scores), and in-hospital mortality. F1 scores, confusion matrices, and areas under the receiver operating characteristic curve (AUCs) were used to compare NLP models. We used the phi coefficient to measure associations with other delirium indicators. Results: The transformer NLP performed best on the following parameters: micro F1=0.978, macro F1=0.918, positive AUC=0.984, and negative AUC=0.992. NLP detections exhibited higher correlations (phi) than ICD codes with deliriogenic medications (0.194 vs 0.073 for ICD codes), restraints and sitter orders (0.358 vs 0.177), mortality (0.216 vs 0.000), and CAM scores (0.256 vs -0.028). Conclusions: Clinical notes are an attractive alternative to ICD codes for EHR delirium studies but require automated methods. Our NLP model detects delirium with high accuracy, similar to manual chart review. Our NLP approach can provide more accurate determination of delirium for large-scale EHR-based studies regarding delirium, quality improvement, and clinical trails.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] A study the clinical index to predict delirium of patients in intensive care units
    Maria, Burboa
    Miranda, Macias
    Gonzalez, Norbis
    SALUD ARTE Y CUIDADO, 2019, 12 (02): : 49 - 53
  • [42] Evaluating Expert-Layperson Agreement in Identifying Jargon Terms in Electronic Health Record Notes: Observational Study
    Lalor, John P.
    Levy, David A.
    Jordan, Harmon S.
    Hu, Wen
    Smirnov, Jenni Kim
    Yu, Hong
    JOURNAL OF MEDICAL INTERNET RESEARCH, 2024, 26
  • [43] Recalibration of the delirium prediction model for ICU patients (PRE-DELIRIC): a multinational observational study
    van den Boogaard, M.
    Schoonhoven, L.
    Maseda, E.
    Plowright, C.
    Jones, C.
    Luetz, A.
    Sackey, P. V.
    Jorens, P. G.
    Aitken, L. M.
    Haren, F. M. P. van
    Donders, R.
    van der Hoeven, J. G.
    Pickkers, P.
    INTENSIVE CARE MEDICINE, 2014, 40 (03) : 361 - 369
  • [44] A nomogram for predicting postoperative delirium in pediatric patients following cardiopulmonary bypass: A prospective observational study
    Lin, Nan
    Lv, Meng
    Li, Shujun
    Xiang, Yujun
    Li, Jiahuan
    Xu, Hongzhen
    INTENSIVE AND CRITICAL CARE NURSING, 2024, 83
  • [45] Recalibration of the delirium prediction model for ICU patients (PRE-DELIRIC): a multinational observational study
    M. van den Boogaard
    L. Schoonhoven
    E. Maseda
    C. Plowright
    C. Jones
    A. Luetz
    P. V. Sackey
    P. G. Jorens
    L. M. Aitken
    F. M. P. van Haren
    R. Donders
    J. G. van der Hoeven
    P. Pickkers
    Intensive Care Medicine, 2014, 40 : 361 - 369
  • [46] Accuracy of the Delirium Observational Screening Scale (DOS) as a screening tool for delirium in patients with advanced cancer
    Neefjes, Elisabeth C. W.
    van der Vorst, Maurice J. D. L.
    Boddaert, Manon S. A.
    Verdegaal, Bea A. T. T.
    Beeker, Aart
    Teunissen, Saskia C. C.
    Beekman, Aartjan T. F.
    Zuurmond, Wouter W. A.
    Berkhof, Johannes
    Verheul, Henk M. W.
    BMC CANCER, 2019, 19 (1)
  • [47] Accuracy of the Delirium Observational Screening Scale (DOS) as a screening tool for delirium in patients with advanced cancer
    Elisabeth C. W. Neefjes
    Maurice J. D. L. van der Vorst
    Manon S. A. Boddaert
    Bea A. T. T. Verdegaal
    Aart Beeker
    Saskia C. C. Teunissen
    Aartjan T. F. Beekman
    Wouter W. A. Zuurmond
    Johannes Berkhof
    Henk M. W. Verheul
    BMC Cancer, 19
  • [48] Clinical profile of delirium in older patients
    Sandberg, O
    Gustafson, Y
    Brännström, B
    Bucht, G
    JOURNAL OF THE AMERICAN GERIATRICS SOCIETY, 1999, 47 (11) : 1300 - 1306
  • [49] Identifying the Presence, Activity, and Status of Extraintestinal Manifestations of Inflammatory Bowel Disease Using Natural Language Processing of Clinical Notes
    Stidham, Ryan W.
    Yu, Deahan
    Zhao, Xinyan
    Bishu, Shrinivas
    Rice, Michael
    Bourque, Charlie
    Vydiswaran, Vinod V. G.
    INFLAMMATORY BOWEL DISEASES, 2023, 29 (04) : 503 - 510
  • [50] Prevalence, course and factors associated with delirium in elderly patients with advanced cancer: a longitudinal observational study
    Uchida, Megumi
    Okuyama, Toru
    Ito, Yoshinori
    Nakaguchi, Tomohiro
    Miyazaki, Mikinori
    Sakamoto, Masaki
    Kamiya, Takeshi
    Sato, Shigeki
    Takeyama, Hiromitsu
    Joh, Takashi
    Meagher, David
    Akechi, Tatsuo
    JAPANESE JOURNAL OF CLINICAL ONCOLOGY, 2015, 45 (10) : 934 - 940