Next-Generation Genome-Scale Metabolic Modeling through Integration of Regulatory Mechanisms

被引:24
作者
Chung, Carolina H. [1 ]
Lin, Da-Wei [2 ]
Eames, Alec [1 ]
Chandrasekaran, Sriram [1 ,2 ,3 ,4 ,5 ]
机构
[1] Univ Michigan, Dept Biomed Engn, Ann Arbor, MI 48109 USA
[2] Univ Michigan, Dept Computat Med & Bioinformat, Ann Arbor, MI 48109 USA
[3] Univ Michigan, Program Chem Biol, Ann Arbor, MI 48109 USA
[4] Univ Michigan, Ctr Bioinformat & Comp Med, Ann Arbor, MI 48109 USA
[5] Univ Michigan, Sch Med, Rogel Canc Ctr, Ann Arbor, MI 48109 USA
关键词
metabolic regulation; metabolic networks; constraint-based modeling; systems biology; genome-scale network models; PROTEIN-PROTEIN INTERACTIONS; POSTTRANSLATIONAL MODIFICATIONS; SYSTEMS BIOLOGY; TRANSCRIPTIONAL REGULATION; ALLOSTERIC REGULATION; CELLULAR-METABOLISM; SIGNAL-TRANSDUCTION; ESCHERICHIA-COLI; NETWORKS; EPIGENETICS;
D O I
10.3390/metabo11090606
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Genome-scale metabolic models (GEMs) are powerful tools for understanding metabolism from a systems-level perspective. However, GEMs in their most basic form fail to account for cellular regulation. A diverse set of mechanisms regulate cellular metabolism, enabling organisms to respond to a wide range of conditions. This limitation of GEMs has prompted the development of new methods to integrate regulatory mechanisms, thereby enhancing the predictive capabilities and broadening the scope of GEMs. Here, we cover integrative models encompassing six types of regulatory mechanisms: transcriptional regulatory networks (TRNs), post-translational modifications (PTMs), epigenetics, protein-protein interactions and protein stability (PPIs/PS), allostery, and signaling networks. We discuss 22 integrative GEM modeling methods and how these have been used to simulate metabolic regulation during normal and pathological conditions. While these advances have been remarkable, there remains a need for comprehensive and widespread integration of regulatory constraints into GEMs. We conclude by discussing challenges in constructing GEMs with regulation and highlight areas that need to be addressed for the successful modeling of metabolic regulation. Next-generation integrative GEMs that incorporate multiple regulatory mechanisms and their crosstalk will be invaluable for discovering cell-type and disease-specific metabolic control mechanisms.
引用
收藏
页数:20
相关论文
共 124 条
  • [1] Regulation of chromatin by histone modifications
    Bannister, Andrew J.
    Kouzarides, Tony
    [J]. CELL RESEARCH, 2011, 21 (03) : 381 - 395
  • [2] Integrating transcriptional activity in genome-scale models of metabolism
    Banos, Daniel Trejo
    Trebulle, Pauline
    Elati, Mohamed
    [J]. BMC SYSTEMS BIOLOGY, 2017, 11
  • [3] The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity
    Barretina, Jordi
    Caponigro, Giordano
    Stransky, Nicolas
    Venkatesan, Kavitha
    Margolin, Adam A.
    Kim, Sungjoon
    Wilson, Christopher J.
    Lehar, Joseph
    Kryukov, Gregory V.
    Sonkin, Dmitriy
    Reddy, Anupama
    Liu, Manway
    Murray, Lauren
    Berger, Michael F.
    Monahan, John E.
    Morais, Paula
    Meltzer, Jodi
    Korejwa, Adam
    Jane-Valbuena, Judit
    Mapa, Felipa A.
    Thibault, Joseph
    Bric-Furlong, Eva
    Raman, Pichai
    Shipway, Aaron
    Engels, Ingo H.
    Cheng, Jill
    Yu, Guoying K.
    Yu, Jianjun
    Aspesi, Peter, Jr.
    de Silva, Melanie
    Jagtap, Kalpana
    Jones, Michael D.
    Wang, Li
    Hatton, Charles
    Palescandolo, Emanuele
    Gupta, Supriya
    Mahan, Scott
    Sougnez, Carrie
    Onofrio, Robert C.
    Liefeld, Ted
    MacConaill, Laura
    Winckler, Wendy
    Reich, Michael
    Li, Nanxin
    Mesirov, Jill P.
    Gabriel, Stacey B.
    Getz, Gad
    Ardlie, Kristin
    Chan, Vivien
    Myer, Vic E.
    [J]. NATURE, 2012, 483 (7391) : 603 - 607
  • [4] Regulating transcription regulators via allostery and flexibility
    Beckett, Dorothy
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2009, 106 (52) : 22035 - 22036
  • [5] A predictive model for transcriptional control of physiology in a free living cell
    Bonneau, Richard
    Facciotti, Marc T.
    Reiss, David J.
    Schmid, Amy K.
    Pan, Min
    Kaur, Amardeep
    Thorsson, Vesteinn
    Shannon, Paul
    Johnson, Michael H.
    Bare, J. Christopher
    Longabaugh, William
    Vuthoori, Madhavi
    Whitehead, Kenia
    Madar, Aviv
    Suzuki, Lena
    Mori, Tetsuya
    Chang, Dong-Eun
    DiRuggiero, Jocelyne
    Johnson, Carl H.
    Hood, Leroy
    Baliga, Nitin S.
    [J]. CELL, 2007, 131 (07) : 1354 - 1365
  • [6] Characterizing posttranslational modifications in prokaryotic metabolism using a multiscale workflow
    Brunk, Elizabeth
    Chang, Roger L.
    Xia, Jing
    Hefzi, Hooman
    Yurkovich, James T.
    Kim, Donghyuk
    Buckmiller, Evan
    Wang, Harris H.
    Cho, Byung-Kwan
    Yang, Chen
    Palsson, Bernhard O.
    Church, George M.
    Lewis, Nathan E.
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2018, 115 (43) : 11096 - 11101
  • [7] Systems biology of the structural proteome
    Brunk, Elizabeth
    Mih, Nathan
    Monk, Jonathan
    Zhang, Zhen
    O'Brien, Edward J.
    Bliven, Spencer E.
    Chen, Ke
    Chang, Roger L.
    Bourne, Philip E.
    Palsson, Bernhard O.
    [J]. BMC SYSTEMS BIOLOGY, 2016, 10
  • [8] Campit S, 2020, METHODS MOL BIOL, V2088, P299, DOI 10.1007/978-1-0716-0159-4_13
  • [9] Nutrient Sensing by Histone Marks: Reading the Metabolic Histone Code Using Tracing, Omics, and Modeling
    Campit, Scott E.
    Meliki, Alia
    Youngson, Neil A.
    Chandrasekaran, Sriram
    [J]. BIOESSAYS, 2020, 42 (09)
  • [10] Post-translational Modification Regulates Formation and Cargo-Loading of Extracellular Vesicles
    Carnino, Jonathan M.
    Ni, Kareemah
    Jin, Yang
    [J]. FRONTIERS IN IMMUNOLOGY, 2020, 11