Strongly Gorenstein-projective Quiver Representations

被引:2
作者
Ju, Tengxia [1 ]
Luo, Xiu-Hua [1 ]
机构
[1] Nantong Univ, Sch Sci, Dept Math, Nantong 226019, Jiangsu, Peoples R China
来源
TAIWANESE JOURNAL OF MATHEMATICS | 2021年 / 25卷 / 03期
基金
美国国家科学基金会;
关键词
quiver representations; separated monic representations; (strongly) Gorenstein-projective modules; upper triangular matrix algebra; MONOMORPHISM CATEGORIES; MODULES; FLAT; HOMOTOPY;
D O I
10.11650/tjm/201103
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given a field k, a finite-dimensional k -algebra A, and a finite acyclic quiver Q, let AQ be the path algebra of Q over A. Then the category of representations of Q over A is equivalent to the category of AQ-modules. The main result of this paper explicitly describes the strongly Gorenstein-projective AQ-modules via the separated monic representations with a local strongly Gorenstein-property. As an application, a necessary and sufficient condition is given on when each Gorenstein-projective AQ-module is strongly Gorenstein-projective. As a direct result, for an integer t >= 2, let A = k[x]/< x(t)>, each Gorenstein-projective AQ-module is strongly Gorensteinprojective if and only if A = k[x]/< x(2)>.
引用
收藏
页码:449 / 461
页数:13
相关论文
共 26 条
[1]   Minimal injective resolutions and Auslander-Gorenstein property for path algebras [J].
Asadollahi, J. ;
Hafezi, R. ;
Keshavarz, M. H. .
COMMUNICATIONS IN ALGEBRA, 2017, 45 (06) :2557-2568
[2]  
AUSLANDER M, 1991, PROG MATH, V95, P221
[3]  
Auslander M., 1969, Mem. Amer. Math. Soc, V94
[4]   Absolute, relative, and Tate cohomology of modules of finite Gorenstein dimension [J].
Avramov, LL ;
Martsinkovsky, A .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2002, 85 :393-440
[5]   Cohen-Macaulay modules, (co)torsion pairs and virtually Gorenstein algebras [J].
Beligiannis, A .
JOURNAL OF ALGEBRA, 2005, 288 (01) :137-211
[6]   Strongly Gorenstein projective, injective, and flat modules [J].
Bennis, Driss ;
Mahdou, Najib .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2007, 210 (02) :437-445
[7]   RINGS OVER WHICH ALL MODULES ARE STRONGLY GORENSTEIN PROJECTIVE [J].
Bennis, Driss ;
Mahdou, Najib ;
Ouarghi, Khalid .
ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2010, 40 (03) :749-759
[8]  
Enochs E., 2002, Quaest. Math, V25, P531
[9]   GORENSTEIN INJECTIVE AND PROJECTIVE-MODULES [J].
ENOCHS, EE ;
JENDA, OMG .
MATHEMATISCHE ZEITSCHRIFT, 1995, 220 (04) :611-633
[10]   ON GORENSTEIN INJECTIVE-MODULES [J].
ENOCHS, EE ;
JENDA, OMG .
COMMUNICATIONS IN ALGEBRA, 1993, 21 (10) :3489-3501