An unexplored antipolar phase in HfO2 from first principles and implication for wake-up mechanism

被引:17
作者
Azevedo Antunes, Luis [1 ]
Ganser, Richard [1 ]
Alcala, Ruben [2 ]
Mikolajick, Thomas [2 ,3 ]
Schroeder, Uwe [2 ]
Kersch, Alfred [1 ]
机构
[1] Munich Univ Appl Sci, Lothstr 34, D-80335 Munich, Germany
[2] NaMLab gGmbH, Noethnitzer Str 64a, D-01187 Dresden, Germany
[3] Tech Univ Dresden, Inst Semicond & Microsyst, D-01062 Dresden, Germany
关键词
D O I
10.1063/5.0063808
中图分类号
O59 [应用物理学];
学科分类号
摘要
Perturbing tetragonal HfO2 supercells in simulation with dopants or interstitial oxygen in the context of the ferroelectric Pca2(1) No. 29 (oIII-phase) formation frequently leads to an unexplored, lower energetic orthorhombic crystal phase with space group Pnma No. 62 (oV-phase). The crystal structure is inequivalent to cottunite oII-phase with the same space group but is closely related to the second ferroelectric Pmn2(1) No. 31 (oIV-phase) space group, as antipolar alignment. To explore the possibility of oIV- or oV-phase formation, we calculate the free energy in harmonic approximation and the energy landscape. Starting from the tetragonal P4(2)/nmc No. 137 phase (t-phase), according to energy and activation barrier, the formation of the oV-phase is more favorable than that of the oIV-phase. Furthermore, exploring the energy landscape of the oIV-oV system, we find possible antiferroelectric-like behavior in HfO2 and Hf0.5Zr0.5O2, but not in ZrO2. We propose the formation of an oV-phase fraction as a possible structural explanation for a contribution to the wake-up phenomenon in HfO2. X-ray diffraction results on 10 nm Hf1-xZrxO2 thin films with varying Zr content are consistent with the claim.
引用
收藏
页数:5
相关论文
共 28 条
  • [1] Influence of oxygen source on the ferroelectric properties of ALD grown Hf1-xZrxO2 films
    Alcala, Ruben
    Richter, Claudia
    Materano, Monica
    Lomenzo, Patrick D.
    Zhou, Chuanzhen
    Jones, Jacob L.
    Mikolajick, Thomas
    Schroeder, Uwe
    [J]. JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2021, 54 (03)
  • [2] Bilbao crystallographic server: I. Databases and crystallographic computing programs
    Aroyo, MI
    Perez-Mato, JM
    Capillas, C
    Kroumova, E
    Ivantchev, S
    Madariaga, G
    Kirov, A
    Wondratschek, H
    [J]. ZEITSCHRIFT FUR KRISTALLOGRAPHIE, 2006, 221 (01): : 15 - 27
  • [3] Ab initio molecular simulations with numeric atom-centered orbitals
    Blum, Volker
    Gehrke, Ralf
    Hanke, Felix
    Havu, Paula
    Havu, Ville
    Ren, Xinguo
    Reuter, Karsten
    Scheffler, Matthias
    [J]. COMPUTER PHYSICS COMMUNICATIONS, 2009, 180 (11) : 2175 - 2196
  • [4] Ferroelectricity in hafnium oxide thin films
    Boescke, T. S.
    Mueller, J.
    Braeuhaus, D.
    Schroeder, U.
    Boettger, U.
    [J]. APPLIED PHYSICS LETTERS, 2011, 99 (10)
  • [5] First-principles study of the effect of pressure on the five zirconia polymorphs. I. Structural, vibrational, and thermoelastic properties
    Fadda, Giuseppe
    Zanzotto, Giovanni
    Colombo, Luciano
    [J]. PHYSICAL REVIEW B, 2010, 82 (06):
  • [6] Optimizing the Piezoelectric Strain in ZrO2- and HfO2-Based Incipient Ferroelectrics for Thin-Film Applications: An Ab Initio Dopant Screening Study
    Falkowski, Max
    Kersch, Alfred
    [J]. ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (29) : 32915 - 32924
  • [7] Pseudopotentials for high-throughput DFT calculations
    Garrity, Kevin F.
    Bennett, Joseph W.
    Rabe, Karin M.
    Vanderbilt, David
    [J]. COMPUTATIONAL MATERIALS SCIENCE, 2014, 81 : 446 - 452
  • [8] A climbing image nudged elastic band method for finding saddle points and minimum energy paths
    Henkelman, G
    Uberuaga, BP
    Jónsson, H
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2000, 113 (22) : 9901 - 9904
  • [9] Pathways towards ferroelectricity in hafnia
    Huan, Tran Doan
    Sharma, Vinit
    Rossetti, George A., Jr.
    Ramprasad, Rampi
    [J]. PHYSICAL REVIEW B, 2014, 90 (06)
  • [10] New Low-Energy Crystal Structures in ZrO2 and HfO2
    Kersch, Alfred
    Falkowski, Max
    [J]. PHYSICA STATUS SOLIDI-RAPID RESEARCH LETTERS, 2021, 15 (05):