Group amenability and actions on Z-stable C*-algebras

被引:3
作者
Gardella, Eusebio [1 ]
Lupini, Martino [2 ,3 ]
机构
[1] Univ Munster, Math Inst, Fachbereich Math & Informat, Einsteinstr 62, D-48149 Munster, Germany
[2] CALTECH, Math Dept, 1200 East Calif Blvd,Mail Code 253-37, Pasadena, CA 91125 USA
[3] Victoria Univ Wellington, Sch Math & Stat, POB 600, Wellington 6140, New Zealand
基金
美国国家科学基金会;
关键词
Amenable group; Free group; Bernoulli shift; GNS construction; Weak containment; Cocycle equivalence; Jiang-Su algebra; Hyperfinite II1 factor; ROKHLIN DIMENSION; ROHLIN PROPERTY; MODEL-THEORY; AUTOMORPHISMS; INVARIANT; RIGIDITY;
D O I
10.1016/j.aim.2021.107931
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study strongly outer actions of discrete groups on C*algebras in relation to (non)amenability. In contrast to related results for amenable groups, where uniqueness of strongly outer actions on the Jiang-Su algebra is expected, we show that uniqueness fails for all nonamenable groups, and that the failure is drastic. Our main result implies that if G contains a copy of F2, then there exist uncountably many, non-co cycle conjugate strongly outer actions of G on any tracial, unital, separable C*-algebra that absorbs tensorially the Jiang-Su algebra. Similar conclusions hold for outer actions on McDuff II1 factors. We moreover show that G is amenable if and only if the Bernoulli shift on any finite strongly self-absorbing C*algebra absorbs the trivial action on the Jiang-Su algebra. Our methods are inspired by Jones' work [27], and consist in a careful study of weak containment for the Koopman representations of certain generalized Bernoulli actions. (c) 2021 Elsevier Inc. All rights reserved.
引用
收藏
页数:33
相关论文
共 45 条
[1]   Partial C*-dynamics and Rokhlin dimension [J].
Abadie, Fernando ;
Gardella, Eusebio ;
Geffen, Shirly .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2022, 42 (10) :2991-3024
[2]   AMENABLE UNITARY REPRESENTATIONS OF LOCALLY COMPACT-GROUPS [J].
BEKKA, MEB .
INVENTIONES MATHEMATICAE, 1990, 100 (02) :383-401
[3]   Covering Dimension of C*-Algebras and 2-Coloured Classification [J].
Bosa, Joan ;
Brown, Nathanial P. ;
Sato, Yasuhiko ;
Tikuisis, Aaron ;
White, Stuart ;
Winter, Wilhelm .
MEMOIRS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 257 (1233) :1-+
[4]  
BRATTELI O, 1995, P LOND MATH SOC, V71, P675
[5]   Families of hyperfinite subfactors with the same standard invariant and prescribed fundamental group [J].
Brothier, Arnaud ;
Vaes, Stefaan .
JOURNAL OF NONCOMMUTATIVE GEOMETRY, 2015, 9 (03) :775-796
[6]  
CONNES A, 1977, ACTA SCI MATH, V39, P39
[7]  
Dadarlat M, 2009, MATH SCAND, V104, P95
[8]  
EPSTEIN I, 2007, ARXIV07074215
[9]   An uncountable family of nonorbit equivalent actions of Fn [J].
Gaboriau, D ;
Popa, S .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 18 (03) :547-559
[10]   A measurable-group-theoretic solution to von Neumann's problem [J].
Gaboriau, Damien ;
Lyons, Russell .
INVENTIONES MATHEMATICAE, 2009, 177 (03) :533-540