Interpolating Nonadiabatic Molecular Dynamics Hamiltonian with Artificial Neural Networks

被引:37
作者
Wang, Bipeng [1 ]
Chu, Weibin [2 ]
Tkatchenko, Alexandre [3 ]
Prezhdo, Oleg, V [1 ,2 ]
机构
[1] Univ Southern Calif, Dept Chem Engn, Los Angeles, CA 90089 USA
[2] Univ Southern Calif, Dept Chem, Los Angeles, CA 90089 USA
[3] Univ Luxembourg, Dept Phys & Mat Sci, L-1511 Luxembourg, Luxembourg
基金
美国国家科学基金会;
关键词
AB-INITIO; CHARGE SEPARATION; SOLAR-CELLS; FORCE-FIELD; RECOMBINATION; LOCALIZATION; TRANSITION;
D O I
10.1021/acs.jpclett.1c01645
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Nonadiabatic (NA) molecular dynamics (MD) allows one to study far-from-equilibrium processes involving excited electronic states coupled to atomic motions. While NAMD involves expensive calculations of excitation energies and NA couplings (NACs), ground-state properties require much less effort and can be obtained with machine learning (ML) at a fraction of the ab initio cost. Application of ML to excited states and NACs is more challenging, due to costly reference methods, many states, and complex geometry dependence. We developed a NAMD methodology that avoids time extrapolation of excitation energies and NACs. Instead, under the classical path approximation that employs a precomputed ground-state trajectory, we use a small fraction (2%) of the geometries to train neural networks and obtain excited-state energies and NACs for the remaining 98% of the geometries by interpolation. Demonstrated with metal halide perovskites that exhibit complex MD, the method provides nearly two orders of computational savings while generating accurate NAMD results.
引用
收藏
页码:6070 / 6077
页数:8
相关论文
共 50 条
[31]   Rationalizing the Unexpected Sensitivity in Excited State Lifetimes of Adenine to Tautomerization by Nonadiabatic Molecular Dynamics [J].
Mandal, Satyajit ;
Srinivasan, Varadharajan .
JOURNAL OF PHYSICAL CHEMISTRY B, 2022, 126 (37) :7077-7087
[32]   Acoustic emission source localization by artificial neural networks [J].
Kalafat, Sinan ;
Sause, Markus G. R. .
STRUCTURAL HEALTH MONITORING-AN INTERNATIONAL JOURNAL, 2015, 14 (06) :633-647
[33]   Navigation using VLF signals with artificial neural networks [J].
Curro, Joseph ;
Raquet, John ;
Borghetti, Brett .
NAVIGATION-JOURNAL OF THE INSTITUTE OF NAVIGATION, 2018, 65 (04) :549-561
[34]   Potential Energy Surfaces Fitted by Artificial Neural Networks [J].
Handley, Chris M. ;
Popelier, Paul L. A. .
JOURNAL OF PHYSICAL CHEMISTRY A, 2010, 114 (10) :3371-3383
[35]   Long-Lived Hot Electron in a Metallic Particle for Plasmonics and Catalysis: Ab Initio Nonadiabatic Molecular Dynamics with Machine Learning [J].
Chu, Weibin ;
Saidi, Wissam A. ;
Prezhdo, Oleg, V .
ACS NANO, 2020, 14 (08) :10608-10615
[36]   The Rise of Neural Networks for Materials and Chemical Dynamics [J].
Kulichenko, Maksim ;
Smith, Justin S. ;
Nebgen, Benjamin ;
Li, Ying Wai ;
Fedik, Nikita ;
Boldyrev, Alexander, I ;
Lubbers, Nicholas ;
Barros, Kipton ;
Tretiak, Sergei .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2021, 12 (26) :6227-6243
[37]   Substrate Activation Efficiency in Active Sites of Hydrolases Determined by QM/MM Molecular Dynamics and Neural Networks [J].
Polyakov, Igor V. ;
Meteleshko, Yulia I. ;
Mulashkina, Tatiana I. ;
Varentsov, Mikhail I. ;
Krinitskiy, Mikhail A. ;
Khrenova, Maria G. .
INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2025, 26 (11)
[38]   Ab initio nonadiabatic molecular dynamics study on spin-orbit coupling induced spin dynamics in ferromagnetic metals [J].
Zhu, Wansong ;
Zheng, Zhenfa ;
Zheng, Qijing ;
Zhao, Jin .
CHINESE PHYSICS B, 2023, 33 (01)
[39]   Molecular dynamics in finding nonadiabatic coupling for β-NaYF4: Ce3+ nanocrystals [J].
Yao, Ge ;
Meng, Qingguo ;
Berry, Mary T. ;
May, P. Stanley ;
Kilin, Dmitri S. .
MOLECULAR PHYSICS, 2015, 113 (3-4) :385-391
[40]   A-site Cation Effects on Hot Carrier Relaxation in Perovskites by Nonadiabatic Molecular Dynamics Simulations [J].
He, Jinlu ;
Long, Run ;
Fang, Weihai .
CHEMICAL JOURNAL OF CHINESE UNIVERSITIES-CHINESE, 2020, 41 (03) :439-446