Interpolating Nonadiabatic Molecular Dynamics Hamiltonian with Artificial Neural Networks

被引:33
作者
Wang, Bipeng [1 ]
Chu, Weibin [2 ]
Tkatchenko, Alexandre [3 ]
Prezhdo, Oleg, V [1 ,2 ]
机构
[1] Univ Southern Calif, Dept Chem Engn, Los Angeles, CA 90089 USA
[2] Univ Southern Calif, Dept Chem, Los Angeles, CA 90089 USA
[3] Univ Luxembourg, Dept Phys & Mat Sci, L-1511 Luxembourg, Luxembourg
来源
JOURNAL OF PHYSICAL CHEMISTRY LETTERS | 2021年 / 12卷 / 26期
基金
美国国家科学基金会;
关键词
AB-INITIO; CHARGE SEPARATION; SOLAR-CELLS; FORCE-FIELD; RECOMBINATION; LOCALIZATION; TRANSITION;
D O I
10.1021/acs.jpclett.1c01645
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Nonadiabatic (NA) molecular dynamics (MD) allows one to study far-from-equilibrium processes involving excited electronic states coupled to atomic motions. While NAMD involves expensive calculations of excitation energies and NA couplings (NACs), ground-state properties require much less effort and can be obtained with machine learning (ML) at a fraction of the ab initio cost. Application of ML to excited states and NACs is more challenging, due to costly reference methods, many states, and complex geometry dependence. We developed a NAMD methodology that avoids time extrapolation of excitation energies and NACs. Instead, under the classical path approximation that employs a precomputed ground-state trajectory, we use a small fraction (2%) of the geometries to train neural networks and obtain excited-state energies and NACs for the remaining 98% of the geometries by interpolation. Demonstrated with metal halide perovskites that exhibit complex MD, the method provides nearly two orders of computational savings while generating accurate NAMD results.
引用
收藏
页码:6070 / 6077
页数:8
相关论文
共 50 条
  • [21] Long Carrier Lifetimes in PbI2-Rich Perovskites Rationalized by Ab Initio Nonadiabatic Molecular Dynamics
    Tong, Chuan-Jia
    Li, Linqiu
    Liu, Li-Min
    Prezhdo, Oleg V.
    ACS ENERGY LETTERS, 2018, 3 (08): : 1868 - 1874
  • [22] Ab initio nonadiabatic molecular dynamics of charge carriers in metal halide perovskites
    Li, Wei
    She, Yalan
    Vasenko, Andrey S.
    Prezhdo, Oleg V.
    NANOSCALE, 2021, 13 (23) : 10239 - 10265
  • [23] Hamiltonian Monte Carlo with Constrained Molecular Dynamics as Gibbs Sampling
    Spiridon, Laurentiu
    Minh, David D. L.
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2017, 13 (10) : 4649 - 4659
  • [24] Charge Recombination Dynamics in a Metal Halide Perovskite Simulated by Nonadiabatic Molecular Dynamics Combined with Machine Learning
    Zhang, Zhaosheng
    Wang, Jiazheng
    Zhang, Yingjie
    Xu, Jianzhong
    Long, Run
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2022, 13 (46) : 10734 - 10740
  • [25] Learning molecular potentials with neural networks
    Gokcan, Hatice
    Isayev, Olexandr
    WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE, 2022, 12 (02)
  • [26] Artificial Neural Networks for Developing Localization Framework in Wireless Sensor Networks
    Payal, Ashish
    Rai, C. S.
    Reddy, B. V. R.
    2014 INTERNATIONAL CONFERENCE ON DATA MINING AND INTELLIGENT COMPUTING (ICDMIC), 2014,
  • [27] Stochastic and Quasi-Stochastic Hamiltonians for Long-Time Nonadiabatic Molecular Dynamics
    Akimov, Alexey V.
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2017, 8 (20): : 5190 - 5195
  • [28] Nonadiabatic Excited-State Molecular Dynamics: Modeling Photophysics in Organic Conjugated Materials
    Nelson, Tammie
    Fernandez-Alberti, Sebastian
    Roitberg, Adrian E.
    Tretiak, Sergei
    ACCOUNTS OF CHEMICAL RESEARCH, 2014, 47 (04) : 1155 - 1164
  • [29] Rationalizing the Unexpected Sensitivity in Excited State Lifetimes of Adenine to Tautomerization by Nonadiabatic Molecular Dynamics
    Mandal, Satyajit
    Srinivasan, Varadharajan
    JOURNAL OF PHYSICAL CHEMISTRY B, 2022, 126 (37) : 7077 - 7087
  • [30] Acoustic emission source localization by artificial neural networks
    Kalafat, Sinan
    Sause, Markus G. R.
    STRUCTURAL HEALTH MONITORING-AN INTERNATIONAL JOURNAL, 2015, 14 (06): : 633 - 647