Interpolating Nonadiabatic Molecular Dynamics Hamiltonian with Artificial Neural Networks

被引:37
作者
Wang, Bipeng [1 ]
Chu, Weibin [2 ]
Tkatchenko, Alexandre [3 ]
Prezhdo, Oleg, V [1 ,2 ]
机构
[1] Univ Southern Calif, Dept Chem Engn, Los Angeles, CA 90089 USA
[2] Univ Southern Calif, Dept Chem, Los Angeles, CA 90089 USA
[3] Univ Luxembourg, Dept Phys & Mat Sci, L-1511 Luxembourg, Luxembourg
基金
美国国家科学基金会;
关键词
AB-INITIO; CHARGE SEPARATION; SOLAR-CELLS; FORCE-FIELD; RECOMBINATION; LOCALIZATION; TRANSITION;
D O I
10.1021/acs.jpclett.1c01645
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Nonadiabatic (NA) molecular dynamics (MD) allows one to study far-from-equilibrium processes involving excited electronic states coupled to atomic motions. While NAMD involves expensive calculations of excitation energies and NA couplings (NACs), ground-state properties require much less effort and can be obtained with machine learning (ML) at a fraction of the ab initio cost. Application of ML to excited states and NACs is more challenging, due to costly reference methods, many states, and complex geometry dependence. We developed a NAMD methodology that avoids time extrapolation of excitation energies and NACs. Instead, under the classical path approximation that employs a precomputed ground-state trajectory, we use a small fraction (2%) of the geometries to train neural networks and obtain excited-state energies and NACs for the remaining 98% of the geometries by interpolation. Demonstrated with metal halide perovskites that exhibit complex MD, the method provides nearly two orders of computational savings while generating accurate NAMD results.
引用
收藏
页码:6070 / 6077
页数:8
相关论文
共 50 条
[21]   Dependence between Structural and Electronic Properties of CsPbI3: Unsupervised Machine Learning of Nonadiabatic Molecular Dynamics [J].
Mangan, Spencer M. ;
Zhou, Guoqing ;
Chu, Weibin ;
Prezhdo, Oleg, V .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2021, 12 (35) :8672-8678
[22]   Long Carrier Lifetimes in PbI2-Rich Perovskites Rationalized by Ab Initio Nonadiabatic Molecular Dynamics [J].
Tong, Chuan-Jia ;
Li, Linqiu ;
Liu, Li-Min ;
Prezhdo, Oleg V. .
ACS ENERGY LETTERS, 2018, 3 (08) :1868-1874
[23]   Ab initio nonadiabatic molecular dynamics of charge carriers in metal halide perovskites [J].
Li, Wei ;
She, Yalan ;
Vasenko, Andrey S. ;
Prezhdo, Oleg V. .
NANOSCALE, 2021, 13 (23) :10239-10265
[24]   Hamiltonian Monte Carlo with Constrained Molecular Dynamics as Gibbs Sampling [J].
Spiridon, Laurentiu ;
Minh, David D. L. .
JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2017, 13 (10) :4649-4659
[25]   Charge Recombination Dynamics in a Metal Halide Perovskite Simulated by Nonadiabatic Molecular Dynamics Combined with Machine Learning [J].
Zhang, Zhaosheng ;
Wang, Jiazheng ;
Zhang, Yingjie ;
Xu, Jianzhong ;
Long, Run .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2022, 13 (46) :10734-10740
[26]   Learning molecular potentials with neural networks [J].
Gokcan, Hatice ;
Isayev, Olexandr .
WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE, 2022, 12 (02)
[27]   Artificial Neural Networks for Developing Localization Framework in Wireless Sensor Networks [J].
Payal, Ashish ;
Rai, C. S. ;
Reddy, B. V. R. .
2014 INTERNATIONAL CONFERENCE ON DATA MINING AND INTELLIGENT COMPUTING (ICDMIC), 2014,
[28]   Assessing the Effectiveness of Neural Networks and Molecular Dynamics Simulations in Predicting Viscosity of Small Organic Molecules [J].
Yue, Tianle ;
Nguyen, Danh ;
Varshney, Vikas ;
Li, Ying .
JOURNAL OF PHYSICAL CHEMISTRY B, 2025, 129 (18) :4501-4513
[29]   Stochastic and Quasi-Stochastic Hamiltonians for Long-Time Nonadiabatic Molecular Dynamics [J].
Akimov, Alexey V. .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2017, 8 (20) :5190-5195
[30]   Nonadiabatic Excited-State Molecular Dynamics: Modeling Photophysics in Organic Conjugated Materials [J].
Nelson, Tammie ;
Fernandez-Alberti, Sebastian ;
Roitberg, Adrian E. ;
Tretiak, Sergei .
ACCOUNTS OF CHEMICAL RESEARCH, 2014, 47 (04) :1155-1164