Phase constituents and microhardness of laser alloyed Ti-6Al-4V alloy

被引:11
|
作者
Adebiyi, D. I. [1 ]
Popoola, A. P. I. [1 ]
Pityana, S. L. [1 ,2 ]
机构
[1] Tshwane Univ Technol, Dept Chem Met & Mat Engn, ZA-0001 Pretoria, South Africa
[2] CSIR, Natl Laser Ctr, ZA-0001 Pretoria, South Africa
基金
新加坡国家研究基金会;
关键词
laser coating; microstructure; microhardness; intermetallic compounds; SURFACE-MODIFICATION; TITANIUM-ALLOYS; STAINLESS-STEEL; MICROSTRUCTURE; HARDNESS; COMPOSITES; EVOLUTION; POWDER; WEAR;
D O I
10.2351/1.4906388
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Ti-6Al-4V alloy possesses excellent mechanical and chemical properties which make it a favorite material for the automobile, aerospace and aeronautical industries, but the alloy has low hardenability and poor wear resistance. This is because of its low resistance to plastic shearing, low work hardening and the low protection offered by its surface oxide. This study was designed to modify the microstructure and enhance the microhardness of the two-phase Ti-6Al-4V alloy. The alloy was laser coated with a premixed ratio of Mo+Zr+Stellite 6 using 4.4 kW continuous wave Rofin Sinar Nd:YAG laser processing system fitted with an off-axis nozzle for powder feeding. Optical and scanning electron microscopes were used to study the microstructural evolution in the laser coatings, while phase constituents were identified and studied by x-ray diffractometer. A through-thickness hardness indentation was measured using Vickers hardness tester. New intermetallic compounds and alloy phases were precipitated which confirmed metallurgical reaction between the substrate and the powder mix. The beta-phase of the two-phase titanium alloy was retained. This is attributed to the presence of Mo, which is a beta phase stabilizer, in the powder mix. There was considerable increase in the Vickers hardness from 357.6 HV0.1 in the native alloy to 1145.2 HV0.1 in the composite coating. (C) 2015 Laser Institute of America.
引用
收藏
页数:5
相关论文
共 50 条
  • [41] Electropolishing Mechanism of Ti-6Al-4V Alloy Fabricated by Selective Laser Melting
    Zhang, Yifei
    Li, Jianzhong
    Che, Shuanghang
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2018, 13 (05): : 4792 - 4807
  • [42] Fretting Wear Behavior of Laser Peened Ti-6Al-4V
    Kumar, S. Anand
    Sundar, R.
    Raman, S. Ganesh Sundara
    Kumar, H.
    Gnanamoorthy, R.
    Kaul, R.
    Ranganathan, K.
    Oak, S. M.
    Kukreja, L. M.
    TRIBOLOGY TRANSACTIONS, 2012, 55 (05) : 615 - 623
  • [43] Anisotropy in the impact toughness of selective laser melted Ti-6Al-4V alloy
    Wu, Ming-Wei
    Lai, Pang-Hsin
    Chen, Jhewn-Kuang
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2016, 650 : 295 - 299
  • [44] Weld Quality Assessment in Fiber Laser Weldments of Ti-6Al-4V Alloy
    Kumar, Chandan
    Das, Manas
    Paul, C. P.
    Bindra, K. S.
    JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE, 2019, 28 (05) : 3048 - 3062
  • [45] Decomposition of deformed α′(α") martensitic phase in Ti-6Al-4V alloy
    Motyka, Maciej
    Baran-Sadleja, Anna
    Sieniawski, Jan
    Wierzbinska, Malgorzata
    Gancarczyk, Kamil
    MATERIALS SCIENCE AND TECHNOLOGY, 2019, 35 (03) : 260 - 272
  • [46] The effect of laser pulse frequency on the microstructure and morphology of duplex treated Ti-6Al-4V alloy
    Al-Aqeeli, N.
    Yilbas, B. S.
    Tabet, N.
    SURFACE & COATINGS TECHNOLOGY, 2011, 205 (8-9): : 3073 - 3079
  • [47] Liquid Phase Surface Treatment of Ti-6Al-4V Titanium Alloy by Pulsed Nd:YAG Laser
    Hassan Ghorbani
    Mahmoud Heydarzadeh Sohi
    Mohammad Javad Torkamany
    Babak Mehrjou
    Journal of Materials Engineering and Performance, 2015, 24 : 3634 - 3642
  • [48] Effect of Prior Deformation on the Formation of the Martensite Phase in Ti-6Al-4V Alloy
    Kumar, K. N. Chaithanya
    Babu, R. Prasath
    Suresh, K. S.
    JOM, 2022, 74 (11) : 4081 - 4093
  • [49] Effect of Ultrasonic Impact Treatment on Structural Phase Transformations in Ti-6Al-4V Titanium Alloy
    Perevalova, O. B.
    Panin, A., V
    Kazachenok, M. S.
    Sinyakova, E. A.
    PHYSICAL MESOMECHANICS, 2022, 25 (03) : 248 - 258
  • [50] Microstructural aspects of superplasticity in Ti-6Al-4V alloy
    Motyka, Maciej
    Sieniawski, Jan
    Ziaja, Waldemar
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2014, 599 : 57 - 63