Dispersive liquid-liquid microextraction combined with dispersive solid-phase extraction for gas chromatography with mass spectrometry determination of polycyclic aromatic hydrocarbons in aqueous matrices

被引:18
|
作者
Hassan, Farah Wahidah Mohd [1 ]
Raoov, Muggundha [2 ]
Kamaruzaman, Sazlinda [3 ]
Sanagi, Mohd Marsin [4 ]
Yoshida, Nao [5 ]
Hirota, Yuichiro [5 ]
Nishiyama, Norikazu [5 ]
Yahaya, Noorfatimah [1 ]
机构
[1] Univ Sains Malaysia, Integrat Med Cluster, Adv Med & Dent Inst, Bertam Kepala Batas 13200, Penang, Malaysia
[2] Univ Malaya, Dept Chem, Fac Sci, Kuala Lumpur, Malaysia
[3] Univ Putra Malaysia, Dept Chem, Fac Sci, Serdang, Malaysia
[4] Univ Teknol Malaysia, Dept Chem, Fac Sci, Johor Baharu, Johor, Malaysia
[5] Osaka Univ, Div Chem Engn, Grad Sch Engn Sci, Toyonaka, Osaka, Japan
关键词
aqueous matrices; dispersive liquid-liquid microextraction; dispersive solid-phase extraction; gas chromatography; polycyclic aromatic hydrocarbons; METAL-ORGANIC FRAMEWORK; COATED MAGNETIC NANOPARTICLES; RAPID-DETERMINATION; EFFICIENT SORBENT; WATER SAMPLES; TEA; SALT; QUANTIFICATION; METABOLITES; PESTICIDES;
D O I
10.1002/jssc.201800326
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
This study describes a dispersive liquid-liquid microextraction combined with dispersive solid-phase extraction method based on phenyl-functionalized magnetic sorbent for the preconcentration of polycyclic aromatic hydrocarbons from environmental water, sugarcane juice, and tea samples prior to gas chromatography with mass spectrometry analysis. Several important parameters affecting the extraction efficiency were investigated thoroughly, including the mass of sorbent, type and volume of extraction solvent, extraction time, type of desorption solvent, desorption time, type and amount of salt-induced demulsifier, and sample volume. Under the optimized extraction and gas chromatography-mass spectrometric conditions, the method revealed good linearity (10-100000ng/L) with coefficient of determination (R-2) of 0.9951, low limits of detection (3-16ng/L), high enrichment factors (61-239), and satisfactory analyte recoveries (86.3-109.1%) with the relative standard deviations<10% (n=5). The entire sample preparation procedure was simple, rapid and can be accomplished within 10min. This method was applied (after pretreatment) to 30 selected samples, and the presence of studied analytes was quantified in 17 samples.
引用
收藏
页码:3751 / 3763
页数:14
相关论文
共 50 条
  • [21] Solid-phase extraction combined with dispersive liquid-liquid microextraction for the analysis of glucocorticoids in environmental waters using liquid chromatography-tandem mass spectrometry
    Antonelli, Lorenzo
    Dal Bosco, Chiara
    De Cesaris, Massimo Giuseppe
    Felli, Nina
    Lucci, Elena
    Gentili, Alessandra
    JOURNAL OF CHROMATOGRAPHY OPEN, 2023, 4
  • [22] Gas chromatography-mass spectrometry determination of polycyclic aromatic hydrocarbons in baby food using QuEChERS combined with low-density solvent dispersive liquid-liquid microextraction
    Petrarca, Mateus Henrique
    Godoy, Helena Teixeira
    FOOD CHEMISTRY, 2018, 257 : 44 - 52
  • [23] Salt assisted liquid-liquid extraction combined with dispersive liquid-liquid microextraction for the determination of 24 regulated polycyclic aromatic hydrocarbons in human serum
    Boughanem, Cecile
    Delaunay, Nathalie
    Pichon, Valerie
    JOURNAL OF PHARMACEUTICAL AND BIOMEDICAL ANALYSIS, 2024, 248
  • [24] Determination of Polycyclic Aromatic Hydrocarbons in Sediment by High Performance Liquid Chromatography Following Vortex-Assisted Extraction Combined with Dispersive Liquid-Liquid Microextraction
    Leng Geng
    Lu Gui-Bin
    Chen Yong
    Yin Hui
    Dan De-Zhong
    CHINESE JOURNAL OF ANALYTICAL CHEMISTRY, 2012, 40 (11) : 1752 - 1757
  • [25] Combined dispersive solid-phase extraction-dispersive liquid-liquid microextraction-derivatization for gas chromatography-mass spectrometric determination of aliphatic amines on atmospheric fine particles
    Majedi, Seyed Mohammad
    Lee, Hian Kee
    JOURNAL OF CHROMATOGRAPHY A, 2017, 1486 : 86 - 95
  • [26] Determination of Triazoles in Tea Samples Using Dispersive Solid Phase Extraction Combined with Dispersive Liquid–Liquid Microextraction Followed by Liquid Chromatography–Tandem Mass Spectrometry
    Yu Zhang
    Hui Xu
    Food Analytical Methods, 2014, 7 : 189 - 196
  • [27] Dispersive solid-phase extraction combined with dispersive liquid-liquid microextraction for simultaneous determination of seven succinate dehydrogenase inhibitor fungicides in watermelon by ultra high performance liquid chromatography with tandem mass spectrometry
    Wu, Junxue
    Zhi, Shenwei
    Jia, Chunhong
    Li, Xinghai
    Zhu, Xiaodan
    Zhao, Ercheng
    JOURNAL OF SEPARATION SCIENCE, 2019, 42 (24) : 3688 - 3696
  • [28] Determination of Topiramate and Carbamazepine in Plasma by Combined Dispersive Liquid-Liquid Microextraction and Gas Chromatography-Mass Spectrometry
    Cabarcos-Fernandez, Pamela
    Tabernero-Duque, Maria Jesus
    Alvarez-Freire, Ivan
    Bermejo-Barrera, Ana Maria
    SEPARATIONS, 2024, 11 (02)
  • [29] Dispersive Liquid-Liquid Microextraction Combined with Gas Chromatography-Mass Spectrometry for the Determination of Multiple Pesticides in Celery
    Yaru Wang
    Xuexue Miao
    Haifeng Wei
    Deyun Liu
    Gaofeng Xia
    Xiaoyun Yang
    Food Analytical Methods, 2016, 9 : 2133 - 2141
  • [30] Dispersive Liquid-Liquid Microextraction Combined with Gas Chromatography-Mass Spectrometry for the Determination of Multiple Pesticides in Celery
    Wang, Yaru
    Miao, Xuexue
    Wei, Haifeng
    Liu, Deyun
    Xia, Gaofeng
    Yang, Xiaoyun
    FOOD ANALYTICAL METHODS, 2016, 9 (08) : 2133 - 2141