Positive solutions for fractional differential systems with nonlocal Riemann-Liouville fractional integral boundary conditions

被引:5
|
作者
Neamprem, Khomsan [1 ]
Muensawat, Thanadon [1 ]
Ntouyas, Sotiris K. [2 ,3 ]
Tariboon, Jessada [1 ]
机构
[1] King Mongkuts Univ Technol North Bangkok, Fac Sci Appl, Dept Math, Nonlinear Dynam Anal Res Ctr, Bangkok 10800, Thailand
[2] Univ Ioannina, Dept Math, GR-45110 Ioannina, Greece
[3] King Abdulaziz Univ, Dept Math, Nonlinear Anal & Appl Math NAAM Res Grp, Fac Sci, POB 80203, Jeddah 21589, Saudi Arabia
关键词
Fractional differential systems; Nonlocal boundary conditions; Riemann-Liouville fractional integral conditions; Positive solutions; Fixed point theorems; COUPLED SYSTEM; EQUATIONS; EXISTENCE;
D O I
10.1007/s11117-016-0433-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study the positive solutions of fractional differential system with coupled nonlocal Riemann-Liouville fractional integral boundary conditions. Our analysis relies on Leggett-Williams and Guo-Krasnoselskii's fixed point theorems. Two examples are worked out to illustrate our main results.
引用
收藏
页码:825 / 845
页数:21
相关论文
共 50 条
  • [21] NONLINEAR RIEMANN-LIOUVILLE FRACTIONAL DIFFERENTIAL EQUATIONS WITH NONLOCAL ERDELYI-KOBER FRACTIONAL INTEGRAL CONDITIONS
    Thongsalee, Natthaphong
    Ntouyas, Sotiris K.
    Tariboon, Jessada
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2016, 19 (02) : 480 - 497
  • [22] Extremal solutions for p-Laplacian fractional differential systems involving the Riemann-Liouville integral boundary conditions
    He, Ying
    ADVANCES IN DIFFERENCE EQUATIONS, 2018, : 1 - 11
  • [23] Extremal solutions for p-Laplacian fractional differential systems involving the Riemann-Liouville integral boundary conditions
    Ying He
    Advances in Difference Equations, 2018
  • [24] Existence of Solutions for Caputo Sequential Fractional Differential Inclusions with Nonlocal Generalized Riemann-Liouville Boundary Conditions
    Manigandan, Murugesan
    Shanmugam, Saravanan
    Rhaima, Mohamed
    Sekar, Elango
    FRACTAL AND FRACTIONAL, 2024, 8 (08)
  • [25] A study of Riemann-Liouville fractional nonlocal integral boundary value problems
    Ahmad, Bashir
    Alsaedi, Ahmed
    Assolami, Afrah
    Agarwal, Ravi P.
    BOUNDARY VALUE PROBLEMS, 2013,
  • [26] A study of Riemann-Liouville fractional nonlocal integral boundary value problems
    Bashir Ahmad
    Ahmed Alsaedi
    Afrah Assolami
    Ravi P Agarwal
    Boundary Value Problems, 2013
  • [27] System of Riemann-Liouville fractional differential equations with nonlocal boundary conditions: Existence, uniqueness, and multiplicity of solutions
    Padhi, Seshadev
    Prasad, B. S. R., V
    Mahendru, Divya
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021, 44 (10) : 8125 - 8149
  • [28] On a sequential fractional differential problem with Riemann-Liouville integral conditions
    Benmehidi, Hammou
    Dahmani, Zoubir
    JOURNAL OF INTERDISCIPLINARY MATHEMATICS, 2022, 25 (04) : 893 - 915
  • [29] Nonlinear Riemann-Liouville Fractional Differential Equations With Nonlocal Erdélyi-Kober Fractional Integral Conditions
    Natthaphong Thongsalee
    Sotiris K. Ntouyas
    Jessada Tariboon
    Fractional Calculus and Applied Analysis, 2016, 19 : 480 - 497
  • [30] Boundary Value Problems for Riemann–Liouville Fractional Differential Inclusions with Nonlocal Hadamard Fractional Integral Conditions
    Sotiris K. Ntouyas
    Jessada Tariboon
    Weerawat Sudsutad
    Mediterranean Journal of Mathematics, 2016, 13 : 939 - 954