Positive solutions for fractional differential systems with nonlocal Riemann-Liouville fractional integral boundary conditions

被引:5
作者
Neamprem, Khomsan [1 ]
Muensawat, Thanadon [1 ]
Ntouyas, Sotiris K. [2 ,3 ]
Tariboon, Jessada [1 ]
机构
[1] King Mongkuts Univ Technol North Bangkok, Fac Sci Appl, Dept Math, Nonlinear Dynam Anal Res Ctr, Bangkok 10800, Thailand
[2] Univ Ioannina, Dept Math, GR-45110 Ioannina, Greece
[3] King Abdulaziz Univ, Dept Math, Nonlinear Anal & Appl Math NAAM Res Grp, Fac Sci, POB 80203, Jeddah 21589, Saudi Arabia
关键词
Fractional differential systems; Nonlocal boundary conditions; Riemann-Liouville fractional integral conditions; Positive solutions; Fixed point theorems; COUPLED SYSTEM; EQUATIONS; EXISTENCE;
D O I
10.1007/s11117-016-0433-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study the positive solutions of fractional differential system with coupled nonlocal Riemann-Liouville fractional integral boundary conditions. Our analysis relies on Leggett-Williams and Guo-Krasnoselskii's fixed point theorems. Two examples are worked out to illustrate our main results.
引用
收藏
页码:825 / 845
页数:21
相关论文
共 32 条
[1]   Positive solutions for mixed problems of singular fractional differential equations [J].
Agarwal, Ravi P. ;
O'Regan, Donal ;
Stanek, Svatoslav .
MATHEMATISCHE NACHRICHTEN, 2012, 285 (01) :27-41
[2]   Existence results for a coupled system of Caputo type sequential fractional differential equations with nonlocal integral boundary conditions [J].
Ahmad, Bashir ;
Ntouyas, Sotiris K. .
APPLIED MATHEMATICS AND COMPUTATION, 2015, 266 :615-622
[3]   A fully Hadamard type integral boundary value problem of a coupled system of fractional differential equations [J].
Ahmad, Bashir ;
Ntouyas, Sotiris K. .
FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2014, 17 (02) :348-360
[4]   Caputo type fractional differential equations with nonlocal Riemann-Liouville integral boundary conditions [J].
Ahmad B. ;
Ntouyas S.K. ;
Assolami A. .
Journal of Applied Mathematics and Computing, 2013, 41 (1-2) :339-350
[5]  
[Anonymous], 2006, THEORY APPL FRACTION, DOI DOI 10.1016/S0304-0208(06)80001-0
[6]  
[Anonymous], 2004, Lecture Notes in Mathematics
[7]  
[Anonymous], 1993, INTRO FRACTIONAL CA
[8]  
[Anonymous], 1999, FRACTIONAL DIFFERENT
[9]   Positive solutions for boundary value problem of nonlinear fractional differential equation [J].
Bai, ZB ;
Lü, HS .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2005, 311 (02) :495-505
[10]   On positive solutions of a nonlocal fractional boundary value problem [J].
Bai, Zhanbing .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 72 (02) :916-924