Mean convergence of Fourier-Dunkl series

被引:8
|
作者
Ciaurri, Oscar [3 ,4 ]
Perez, Mario [1 ,2 ]
Manuel Reyes, Juan [5 ]
Luis Varona, Juan [3 ,4 ]
机构
[1] Univ Zaragoza, IUMA, E-50009 Zaragoza, Spain
[2] Univ Zaragoza, Dept Matemat, E-50009 Zaragoza, Spain
[3] Univ La Rioja, CIME, Logrono 26004, Spain
[4] Univ La Rioja, Dept Matemat & Computac, Logrono 26004, Spain
[5] Univ Pompeu Fabra, Dept Tecnol, Barcelona 08003, Spain
关键词
Dunkl transform; Fourier-Dunkl series; Orthogonal system; Mean convergence; WEIGHTED NORM INEQUALITIES; TRANSFORM; THEOREM;
D O I
10.1016/j.jmaa.2010.07.029
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the context of the Dunkl transform a complete orthogonal system arises in a very natural way. This paper studies the weighted norm convergence of the Fourier series expansion associated to this system. We establish conditions on the weights, in terms of the A(p) classes of Muckenhoupt, which ensure the convergence. Necessary conditions are also proved, which for a wide class of weights coincide with the sufficient conditions. (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:470 / 485
页数:16
相关论文
共 50 条
  • [41] Fourier Series of Gegenbauer-Sobolev Polynomials
    Ciaurri, Oscar
    Minguez, Judit
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2018, 14
  • [42] Resolution of the Gibbs Phenomenon for Fractional Fourier Series
    Zhu, Hongqing
    Ding, Meiyu
    Gao, Daqi
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2014, E97A (02) : 572 - 586
  • [43] Abstract noncommutative Fourier series on Γ\SE(2)
    Farashahi, Arash Ghaani
    Chirikjian, Gregory
    PURE AND APPLIED MATHEMATICS QUARTERLY, 2022, 18 (01) : 71 - 100
  • [44] Fourier-Zernike Series of Convolutions on Disks
    Farashahi, Arash Ghaani
    Chirikjian, Gregory S.
    MATHEMATICS, 2018, 6 (12):
  • [45] On the Absolute Matrix Summability Factors of Fourier Series
    Yildiz, S.
    MATHEMATICAL NOTES, 2018, 103 (1-2) : 297 - 303
  • [46] Almost everywhere convergence of prolate spheroidal series
    Jaming, Philippe
    Speckbacher, Michael
    ILLINOIS JOURNAL OF MATHEMATICS, 2020, 64 (04) : 467 - 479
  • [47] MEAN CONVERGENCE OF EXPANSIONS IN FREUD-TYPE ORTHOGONAL POLYNOMIALS
    MHASKAR, HN
    XU, Y
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1991, 22 (03) : 847 - 855
  • [48] On the pointwise convergence of the sequence of partial Fourier sums along lacunary subsequences
    Lie, Victor
    JOURNAL OF FUNCTIONAL ANALYSIS, 2012, 263 (11) : 3391 - 3411
  • [49] VILENKIN-FOURIER SERIES IN VARIABLE LEBESGUE SPACES
    Adamadze, Daviti
    Kopaliani, Tengiz
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2023, 26 (04): : 977 - 993
  • [50] An Extension of a Fourier Series Model. for ECG Simulation
    Rosu, Doina
    Feier, Horea
    Streian, Glad C.
    Atudoroaie, Ioana
    Rosu, Serban
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, VOLS I-III, 2010, 1281 : 1371 - 1374