Parotid gland fat related Magnetic Resonance image biomarkers improve prediction of late radiation-induced xerostomia

被引:66
|
作者
van Dijk, Lisanne V. [1 ]
Thor, Maria [2 ]
Steenbakkers, Roel J. H. M. [1 ]
Apte, Aditya [2 ]
Zhai, Tian-Tian [1 ]
Borra, Ronald [3 ]
Noordzij, Walter [4 ]
Estilo, Cherry [5 ]
Lee, Nancy [6 ]
Langendijk, Johannes A. [1 ]
Deasy, Joseph O. [2 ]
Sijtsema, Nanna M. [1 ]
机构
[1] Univ Groningen, Univ Med Ctr Groningen, Dept Radiat Oncol, Groningen, Netherlands
[2] Mem Sloan Kettering Canc Ctr, Dept Med Phys, New York, NY 10021 USA
[3] Univ Groningen, Univ Med Ctr Groningen, Dept Radiol, Groningen, Netherlands
[4] Univ Groningen, Univ Med Ctr Groningen, Nucl Med & Mol Imaging, Groningen, Netherlands
[5] Mem Sloan Kettering Canc Ctr, Dept Surg, 1275 York Ave, New York, NY 10021 USA
[6] Mem Sloan Kettering Canc Ctr, Dept Radiat Oncol, 1275 York Ave, New York, NY 10021 USA
关键词
Xerostomia; NTCP; Image biomarkers; Head and neck cancer; Magnetic Resonance Imaging; Radiomics; INTENSITY-MODULATED RADIOTHERAPY; PROGNOSTIC VALUE; NECK-CANCER; F-18-FDG PET/CT; HEAD; MODEL; OPTIMIZATION; RADIOMICS;
D O I
10.1016/j.radonc.2018.06.012
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Purpose: This study investigated whether Magnetic Resonance image biomarkers (MR-IBMs) were associated with xerostomia 12 months after radiotherapy (Xer(12m)) and to test the hypothesis that the ratio of fat-to-functional parotid tissue is related to Xer(12m). Additionally, improvement of the reference Xer(12m) model based on parotid gland dose and baseline xerostomia, with MR-IBMs was explored. Methods: Parotid gland MR-IBMs of 68 head and neck cancer patients were extracted from pre-treatment T1-weighted MR images, which were normalized to fat tissue, quantifying 21 intensity and 43 texture image characteristics. The performance of the resulting multivariable logistic regression models after bootstrapped forward selection was compared with that of the logistic regression reference model. Validity was tested in a small external cohort of 25 head and neck cancer patients. Results: High intensity MR-IBM P90 (the 90th intensity percentile) values were significantly associated with a higher risk of Xer(12m). High P90 values were related to high fat concentration in the parotid glands. The MR-IBM P90 significantly improved model performance in predicting Xer(12m) (likelihood-ratio-test; p = 0.002), with an increase in internally validated AUC from 0.78 (reference model) to 0.83 (P90). The MR-IBM P90 model also outperformed the reference model (AUC = 0.65) on the external validation cohort (AUC = 0.83). Conclusion: Pre-treatment MR-IBMs were associated to radiation-induced xerostomia, which supported the hypothesis that the amount of predisposed fat within the parotid glands is associated with Xer(12m). In addition, xerostomia prediction was improved with MR-IBMs compared to the reference model. (C) 2018 The Authors. Published by Elsevier B.V.
引用
收藏
页码:459 / 466
页数:8
相关论文
共 18 条
  • [1] 18F-FDG PET image biomarkers improve prediction of late radiation-induced xerostomia
    van Dijk, Lisanne V.
    Noordzij, Walter
    Brouwer, Charlotte L.
    Boellaard, Ronald
    Burgerhof, Johannes G. M.
    Langendijk, Johannes A.
    Sijtsema, Nanna M.
    Steenbakkers, Roel J. H. M.
    RADIOTHERAPY AND ONCOLOGY, 2018, 126 (01) : 89 - 95
  • [2] Predicting late radiation-induced xerostomia with parotid gland PET biomarkers and dose metrics
    Wilkie, Joel R.
    Mierzwa, Michelle L.
    Casper, Keith A.
    Mayo, Charles S.
    Schipper, Matthew J.
    Eisbruch, Avraham
    Worden, Francis P.
    El Naqa, Issam
    Viglianti, Benjamin L.
    Rosen, Benjamin S.
    RADIOTHERAPY AND ONCOLOGY, 2020, 148 : 30 - 37
  • [3] CT image biomarkers to improve patient-specific prediction of radiation-induced xerostomia and sticky saliva
    van Dijk, Lisanne V.
    Brouwer, Charlotte L.
    van der Schaaf, Arjen
    Burgerhof, Johannes G. M.
    Beukinga, Roelof J.
    Langendijk, Johannes A.
    Sijtsema, Nanna M.
    Steenbakkers, Roel J. H. M.
    RADIOTHERAPY AND ONCOLOGY, 2017, 122 (02) : 185 - 191
  • [4] RADIATION-INDUCED DAMAGE TO MICROSTRUCTURE OF PAROTID GLAND: EVALUATION USING HIGH-RESOLUTION MAGNETIC RESONANCE IMAGING
    Kan, Tomoko
    Kodani, Kazuhiko
    Michimoto, Koichi
    Fujii, Shinya
    Ogawa, Toshihide
    INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2010, 77 (04): : 1030 - 1038
  • [5] Magnetic Resonance and CT Imaging Biomarkers for Prediction of Acute and Chronic Radiation-Induced Xerostomia
    Katsavochristou, Anastasia
    Koumoulis, Dimitrios
    MAGNETOCHEMISTRY, 2021, 7 (01) : 1 - 6
  • [6] Evaluation of Salivary Gland Function Using Diffusion-Weighted Magnetic Resonance Imaging for Follow-Up of Radiation-Induced Xerostomia
    Zhang, Yunyan
    Ou, Dan
    Gu, Yajia
    He, Xiayun
    Peng, Weijun
    KOREAN JOURNAL OF RADIOLOGY, 2018, 19 (04) : 758 - 766
  • [7] Prediction of Radiation-Induced Parotid Gland-Related Xerostomia in Patients With Head and Neck Cancer: Regeneration-Weighted Dose
    van Rijn-Dekker, Maria I.
    van Luijk, Peter
    Schuit, Ewoud
    van der Schaaf, Arjen van der
    Langendijk, Johannes A.
    Steenbakkers, Role J. H. M.
    INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2023, 117 (03): : 750 - 762
  • [8] Mid-treatment 18F-FDG PET imaging changes in parotid gland correlates to radiation-induced xerostomia
    Trada, Yuvnik
    Lee, Mark T.
    Jameson, Michael G.
    Chlap, Phillip
    Keall, Paul
    Moses, Daniel
    Lin, Peter
    Fowler, Allan
    RADIOTHERAPY AND ONCOLOGY, 2023, 186
  • [9] A review of diffusion-weighted magnetic resonance imaging in head and neck cancer patients for treatment evaluation and prediction of radiation-induced xerostomia
    Ermongkonchai, Tai
    Khor, Richard
    Wada, Morikatsu
    Lau, Eddie
    Xing, Daniel Tao
    Ng, Sweet Ping
    RADIATION ONCOLOGY, 2023, 18 (01)
  • [10] Magnetic resonance image biomarkers improve differentiation of benign and malignant parotid tumors through diagnostic model analysis
    Liu, Yuebo
    Zheng, Jiabao
    Zhao, Jizhi
    Yu, Lijiang
    Lu, Xiaoping
    Zhu, Zhihui
    Guo, Chunlan
    Zhang, Tao
    ORAL RADIOLOGY, 2021, 37 (04) : 658 - 668