Multilayer PEO/LLZTO composite electrolyte enables high-performance solid-state Li-ion batteries

被引:18
|
作者
Guan, Dichang [1 ]
Huang, Yong [1 ]
He, Meimei [2 ]
Hu, Guorong [1 ,3 ,4 ]
Peng, Zhongdong [1 ,3 ,4 ]
Cao, Yanbing [1 ,3 ,4 ]
Du, Ke [1 ,3 ,4 ]
机构
[1] Cent South Univ, Sch Met & Environm, Changsha 410083, Peoples R China
[2] Huayou New Energy Technol Quzhou Co Ltd, 18 Nianxin Rd,Hitech Ind Pk Phase 2, Quzhou, Zhejiang, Peoples R China
[3] Cent South Univ, Minist Educ Adv Battery Mat, Engn Res Ctr, Changsha 410083, Peoples R China
[4] Cent South Univ, Hunan Prov Key Lab Nonferrous Value Added Met, Changsha 410083, Peoples R China
基金
中国国家自然科学基金;
关键词
All-solid-state Li-ion batteries; Multilayer PEO-based composite electrolytes; Ionic conductivity; Electrochemical window; LITHIUM BATTERIES; POLYMER;
D O I
10.1007/s11581-021-04176-w
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
All-solid-state Li-ion batteries (ASSLBs) are promising systems to power electronic devices and electric vehicles for their high-energy density and safety. PEO-based composite electrolytes containing lithium salts and various fillers have been regarded as the most attractive solid electrolytes for ASSLBs due to their high interfacial compatibility with electrodes, high mechanical flexibility, and easy fabrication. For PEO/lithium salt/ceramic composite electrolytes, both "ceramic-inpolymer" and "polymer in ceramic" can be applied to solid- state batteries. "Ceramic-in-polymer" can provide high ionic conductivity but narrow electrochemical window; "polymer in ceramic" can provide wide electrochemical window but low ionic conductivity. In order to combine the high conductivity of "ceramic in polymer" with the wide electrochemical window of "polymer in ceramic," we designed multilayer PEO/ -Li6.4La3Zr1.4Ta0.6O12(LLZTO) composite electrolytes with low content of LLZTO (10wt %) in the inside layer and high content of LLZTO (40wt %) in the surface layer (PCEs-40-1040) by a simple solution casting method. The PCEs-40-10-40 showed high ionic conductivity(4.61 x 10(-4) S . cm(-1)) and a wide electrochemical window(> 5.1 V) at 60 degrees C Compared with monolayer composite electrolytes, solid-state LiFePO4 vertical bar Li batteries with multilayer composite electrolytes showed much better cycling stability (capacity retention of 98.8% after 200 cycles) at 0.5C and 60 degrees C This work shall give practical insights for the applications of PEO-based composite electrolytes.
引用
收藏
页码:4127 / 4134
页数:8
相关论文
共 50 条
  • [21] Tuning Solid Interfaces via Varying Electrolyte Distributions Enables High-Performance Solid-State Batteries
    Linfeng Peng
    Chuang Yu
    Ziqi Zhang
    Ruonan Xu
    Mengjun Sun
    Long Zhang
    Shijie Cheng
    Jia Xie
    Energy & Environmental Materials, 2023, 6 (02) : 114 - 121
  • [22] Tuning Solid Interfaces via Varying Electrolyte Distributions Enables High-Performance Solid-State Batteries
    Peng, Linfeng
    Yu, Chuang
    Zhang, Ziqi
    Xu, Ruonan
    Sun, Mengjun
    Zhang, Long
    Cheng, Shijie
    Xie, Jia
    ENERGY & ENVIRONMENTAL MATERIALS, 2023, 6 (02)
  • [23] A High-Performance Self-Reinforced PEO-Based Blend Solid Electrolyte Membrane for Solid-State Lithium Ion Batteries
    Hongyun Chengbin Li
    Qiuxian Yue
    Shuting Wang
    Russian Journal of Electrochemistry, 2022, 58 : 271 - 283
  • [24] A highly ion -conductive three-dimensional LLZAO-PEO/LiTFSI solid electrolyte for high-performance solid-state batteries
    Cai, Dan
    Wang, Donghuang
    Chen, Yongjie
    Zhang, Shengzhao
    Wang, Xiuli
    Xia, Xinhui
    Tu, Jiangping
    CHEMICAL ENGINEERING JOURNAL, 2020, 394
  • [25] A High-Performance Self-Reinforced PEO-Based Blend Solid Electrolyte Membrane for Solid-State Lithium Ion Batteries
    Li, Chengbin
    Yue, Hongyun
    Wang, Qiuxian
    Yang, Shuting
    RUSSIAN JOURNAL OF ELECTROCHEMISTRY, 2022, 58 (04) : 271 - 283
  • [26] Antiperovskite Li3OCl solid-state electrolyte films for Li-ion batteries
    Lu, Xujie
    Zhao, Yusheng
    Xu, Hongwu
    Jia, Quanxi
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2015, 250
  • [27] Stable and Flexible Sulfide Composite Electrolyte for High-Performance Solid-State Lithium Batteries
    Li, Yang
    Arnold, William
    Thapa, Arjun
    Jasinski, Jacek B.
    Sumanasekera, Gamini
    Sunkara, Mahendra
    Druffel, Thad
    Wang, Hui
    ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (38) : 42653 - 42659
  • [28] Sandwiched composite electrolyte with excellent interfacial contact for high-performance solid-state sodium-ion batteries
    Wang, Wenting
    Yuan, Wenyong
    Zhao, Zhongjun
    Zhou, Pengfei
    Zhang, Pengju
    Ding, Minghui
    Bai, Jiahai
    Weng, Junying
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2023, 652 : 132 - 141
  • [29] Solid-state thin film li-ion batteries
    Song Jie
    Wu Qihui
    Dong Quanfeng
    Zheng Mingsen
    Wu Suntao
    Sun Shigang
    PROGRESS IN CHEMISTRY, 2007, 19 (01) : 66 - 73
  • [30] Rationally Designed PEGDA-LLZTO Composite Electrolyte for Solid-State Lithium Batteries
    Yu, Xingwen
    Liu, Yijie
    Goodenough, John B.
    Manthiram, Arumugam
    ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (26) : 30703 - 30711