Detail Injection-Based Deep Convolutional Neural Networks for Pansharpening

被引:206
作者
Deng, Liang-Jian [1 ]
Vivone, Gemine [2 ]
Jin, Cheng [3 ]
Chanussot, Jocelyn [4 ]
机构
[1] Univ Elect Sci & Technol China, Sch Math Sci, Chengdu 611731, Peoples R China
[2] CNR, IMAA, Inst Methodol Environm Anal, Natl Res Council, I-85050 Tito, Italy
[3] Univ Elect Sci & Engn China, Sch Optoelect, Chengdu 611731, Peoples R China
[4] Univ Grenoble Alpes, CNRS, Grenoble INP, INRIA,Lab Jean Kuntzmann LJK, F-38000 Grenoble, France
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 2021年 / 59卷 / 08期
关键词
Spatial resolution; Computer architecture; Convolutional neural networks; Multiresolution analysis; Training; Component substitution (CS); deep convolutional neural network (DCNN); image fusion; multiresolution analysis (MRA); pansharpening; remote sensing; PAN-SHARPENING METHOD; IMAGE FUSION; WAVELET TRANSFORM; RESOLUTION; MODEL;
D O I
10.1109/TGRS.2020.3031366
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
The fusion of high spatial resolution panchromatic (PAN) data with simultaneously acquired multispectral (MS) data with the lower spatial resolution is a hot topic, which is often called pansharpening. In this article, we exploit the combination of machine learning techniques and fusion schemes introduced to address the pansharpening problem. In particular, deep convolutional neural networks (DCNNs) are proposed to solve this issue. The latter is combined first with the traditional component substitution and multiresolution analysis fusion schemes in order to estimate the nonlinear injection models that rule the combination of the upsampled low-resolution MS image with the extracted details exploiting the two philosophies. Furthermore, inspired by these two approaches, we also developed another DCNN for pansharpening. This is fed by the direct difference between the PAN image and the upsampled low-resolution MS image. Extensive experiments conducted both at reduced and full resolutions demonstrate that this latter convolutional neural network outperforms both the other detail injection-based proposals and several state-of-the-art pansharpening methods.
引用
收藏
页码:6995 / 7010
页数:16
相关论文
共 64 条
[1]   MTF-tailored multiscale fusion of high-resolution MS and pan imagery [J].
Aiazzi, B. ;
Alparone, L. ;
Baronti, S. ;
Garzelli, A. ;
Selva, M. .
PHOTOGRAMMETRIC ENGINEERING AND REMOTE SENSING, 2006, 72 (05) :591-596
[2]   Context-driven fusion of high spatial and spectral resolution images based on oversampled multiresolution analysis [J].
Aiazzi, B ;
Alparone, L ;
Baronti, S ;
Garzelli, A .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2002, 40 (10) :2300-2312
[3]   Comparison of pansharpening algorithms: Outcome of the 2006 GRS-S data-fusion contest [J].
Alparone, Luciano ;
Wald, Lucien ;
Chanussot, Jocelyn ;
Thomas, Claire ;
Gamba, Paolo ;
Bruce, Lori Mann .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2007, 45 (10) :3012-3021
[4]   A Regularized Model-Based Optimization Framework for Pan-Sharpening [J].
Aly, Hussein A. ;
Sharma, Gaurav .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2014, 23 (06) :2596-2608
[5]   Convolutional Autoencoder-Based Multispectral Image Fusion [J].
Azarang, Arian ;
Manoochehri, Hafez E. ;
Kehtarnavaz, Nasser .
IEEE ACCESS, 2019, 7 :35673-35683
[6]   THE LAPLACIAN PYRAMID AS A COMPACT IMAGE CODE [J].
BURT, PJ ;
ADELSON, EH .
IEEE TRANSACTIONS ON COMMUNICATIONS, 1983, 31 (04) :532-540
[7]   SIRF: Simultaneous Satellite Image Registration and Fusion in a Unified Framework [J].
Chen, Chen ;
Li, Yeqing ;
Liu, Wei ;
Huang, Junzhou .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2015, 24 (11) :4213-4224
[8]   A New Adaptive Component-Substitution-Based Satellite Image Fusion by Using Partial Replacement [J].
Choi, Jaewan ;
Yu, Kiyun ;
Kim, Yongil .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2011, 49 (01) :295-309
[9]  
Dalla Mura M, 2014, EUR SIGNAL PR CONF, P106
[10]   The fusion of panchromatic and multispectral remote sensing images via tensor-based sparse modeling and hyper-Laplacian prior [J].
Deng, Liang-Jian ;
Feng, Minyu ;
Tai, Xue-Cheng .
INFORMATION FUSION, 2019, 52 :76-89