Data-driven financial transmission right scenario generation and speculation
被引:3
作者:
Zheng, Kedi
论文数: 0引用数: 0
h-index: 0
机构:
Tsinghua Univ, Dept Elect Engn, State Key Lab Power Syst, Beijing 100084, Peoples R ChinaTsinghua Univ, Dept Elect Engn, State Key Lab Power Syst, Beijing 100084, Peoples R China
Zheng, Kedi
[1
]
Chen, Huiyao
论文数: 0引用数: 0
h-index: 0
机构:
Univ Penn, Wharton Sch, Philadelphia, PA 19104 USATsinghua Univ, Dept Elect Engn, State Key Lab Power Syst, Beijing 100084, Peoples R China
Chen, Huiyao
[2
]
Wang, Yi
论文数: 0引用数: 0
h-index: 0
机构:
Univ Hong Kong, Dept Elect & Elect Engn, Hong Kong, Peoples R ChinaTsinghua Univ, Dept Elect Engn, State Key Lab Power Syst, Beijing 100084, Peoples R China
Wang, Yi
[3
]
Chen, Qixin
论文数: 0引用数: 0
h-index: 0
机构:
Tsinghua Univ, Dept Elect Engn, State Key Lab Power Syst, Beijing 100084, Peoples R ChinaTsinghua Univ, Dept Elect Engn, State Key Lab Power Syst, Beijing 100084, Peoples R China
Chen, Qixin
[1
]
机构:
[1] Tsinghua Univ, Dept Elect Engn, State Key Lab Power Syst, Beijing 100084, Peoples R China
[2] Univ Penn, Wharton Sch, Philadelphia, PA 19104 USA
[3] Univ Hong Kong, Dept Elect & Elect Engn, Hong Kong, Peoples R China
This paper proposes a data-driven framework to solve the financial transmission right (FTR) portfolio construction problem from the perspective of a speculator. FTR speculation is modeled as a stochastic programming problem in which uncertainty comes from the price spread across different pricing nodes over a certain holding period. Since it is difficult to model and forecast the joint distribution of prices for typical electricity markets with thousands of pricing nodes, k-means clustering with network congestion patterns is first used to help focus on important nodes and reduce the problem size. Then, a quantile regression (QR)-based method is proposed to predict the conditional distribution of average nodal prices. A Gaussian copula is further used to construct the joint conditional distribution of average nodal prices. The proposed method is tested on real market data obtained from the southwest power pool (SPP). The results show that the method has a steady performance in both node selection and price scenario generation and outperforms state-of-art methods, including copula-GARCH and truncated skew-t distributions. (c) 2021 Elsevier Ltd. All rights reserved.
机构:
Univ Massachusetts, Dept Comp Sci, Lowell, MA 01854 USAUniv Massachusetts, Dept Comp Sci, Lowell, MA 01854 USA
Pourkamali-Anaraki, Farhad
Hariri-Ardebili, Mohammad Amin
论文数: 0引用数: 0
h-index: 0
机构:
Univ Colorado, Dept Civil Engn, Boulder, CO 80309 USA
Univ Maryland, College Pk, MD 20742 USAUniv Massachusetts, Dept Comp Sci, Lowell, MA 01854 USA
机构:
INRIA, IMB, UMR 5251, Talence, France
Sartorius, Corp Res Adv Data Analyt, Aubagne, France
Univ Bordeaux, CNRS, Bordeaux INP, IMB,UMR 5251, Talence, FranceINRIA, IMB, UMR 5251, Talence, France
Lorenzo, Hadrien
Cloarec, Olivier
论文数: 0引用数: 0
h-index: 0
机构:
Sartorius, Corp Res Adv Data Analyt, Aubagne, FranceINRIA, IMB, UMR 5251, Talence, France
Cloarec, Olivier
论文数: 引用数:
h-index:
机构:
Thiebaut, Rodolphe
Saracco, Jerome
论文数: 0引用数: 0
h-index: 0
机构:
INRIA, IMB, UMR 5251, Talence, France
Univ Bordeaux, CNRS, Bordeaux INP, IMB,UMR 5251, Talence, FranceINRIA, IMB, UMR 5251, Talence, France
机构:
Chinese Univ Hong Kong, Dept Mech & Automat Engn, Hong Kong, Peoples R ChinaChinese Univ Hong Kong, Dept Mech & Automat Engn, Hong Kong, Peoples R China
Wu, Yiu-Bun
Liu, Bin
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Univ Hong Kong, Dept Mech & Automat Engn, Hong Kong, Peoples R China
Dalian Univ Technol, Sch Math Sci, Dalian, Peoples R ChinaChinese Univ Hong Kong, Dept Mech & Automat Engn, Hong Kong, Peoples R China
Liu, Bin
Liu, Xiuping
论文数: 0引用数: 0
h-index: 0
机构:
Dalian Univ Technol, Sch Math Sci, Dalian, Peoples R ChinaChinese Univ Hong Kong, Dept Mech & Automat Engn, Hong Kong, Peoples R China
Liu, Xiuping
Wang, Charlie C. L.
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Univ Hong Kong, Dept Mech & Automat Engn, Hong Kong, Peoples R ChinaChinese Univ Hong Kong, Dept Mech & Automat Engn, Hong Kong, Peoples R China
机构:
Univ Massachusetts, Dept Comp Sci, Lowell, MA 01854 USAUniv Massachusetts, Dept Comp Sci, Lowell, MA 01854 USA
Pourkamali-Anaraki, Farhad
Hariri-Ardebili, Mohammad Amin
论文数: 0引用数: 0
h-index: 0
机构:
Univ Colorado, Dept Civil Engn, Boulder, CO 80309 USA
Univ Maryland, College Pk, MD 20742 USAUniv Massachusetts, Dept Comp Sci, Lowell, MA 01854 USA
机构:
INRIA, IMB, UMR 5251, Talence, France
Sartorius, Corp Res Adv Data Analyt, Aubagne, France
Univ Bordeaux, CNRS, Bordeaux INP, IMB,UMR 5251, Talence, FranceINRIA, IMB, UMR 5251, Talence, France
Lorenzo, Hadrien
Cloarec, Olivier
论文数: 0引用数: 0
h-index: 0
机构:
Sartorius, Corp Res Adv Data Analyt, Aubagne, FranceINRIA, IMB, UMR 5251, Talence, France
Cloarec, Olivier
论文数: 引用数:
h-index:
机构:
Thiebaut, Rodolphe
Saracco, Jerome
论文数: 0引用数: 0
h-index: 0
机构:
INRIA, IMB, UMR 5251, Talence, France
Univ Bordeaux, CNRS, Bordeaux INP, IMB,UMR 5251, Talence, FranceINRIA, IMB, UMR 5251, Talence, France
机构:
Chinese Univ Hong Kong, Dept Mech & Automat Engn, Hong Kong, Peoples R ChinaChinese Univ Hong Kong, Dept Mech & Automat Engn, Hong Kong, Peoples R China
Wu, Yiu-Bun
Liu, Bin
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Univ Hong Kong, Dept Mech & Automat Engn, Hong Kong, Peoples R China
Dalian Univ Technol, Sch Math Sci, Dalian, Peoples R ChinaChinese Univ Hong Kong, Dept Mech & Automat Engn, Hong Kong, Peoples R China
Liu, Bin
Liu, Xiuping
论文数: 0引用数: 0
h-index: 0
机构:
Dalian Univ Technol, Sch Math Sci, Dalian, Peoples R ChinaChinese Univ Hong Kong, Dept Mech & Automat Engn, Hong Kong, Peoples R China
Liu, Xiuping
Wang, Charlie C. L.
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Univ Hong Kong, Dept Mech & Automat Engn, Hong Kong, Peoples R ChinaChinese Univ Hong Kong, Dept Mech & Automat Engn, Hong Kong, Peoples R China