A k-populations algorithm for clustering categorical data

被引:22
|
作者
Kim, DW [1 ]
Lee, K
Lee, D
Lee, KH
机构
[1] Korea Adv Inst Sci & Technol, Dept BioSyst, Taejon 305701, South Korea
[2] Korea Adv Inst Sci & Technol, Adv Informat Technol Res Ctr, Taejon 305701, South Korea
[3] Korea Adv Inst Sci & Technol, Dept Elect Engn & Comp Sci, Taejon 305701, South Korea
关键词
clustering; categorical data; hierarchical algorithm; k-modes algorithm; fuzzy k-modes algorithm;
D O I
10.1016/j.patcog.2004.11.017
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, the conventional k-modes-type algorithms for clustering categorical data are extended by representing the clusters of categorical data with k-populations instead of the hard-type centroids used in the conventional algorithms. Use of a population-based centroid representation makes it possible to preserve the uncertainty inherent in data sets as long as possible before actual decisions are made. The k-populations algorithm was found to give markedly better clustering results through various experiments. (c) 2005 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:1131 / 1134
页数:4
相关论文
共 50 条
  • [31] Categorical Data Clustering Using Harmony Search Algorithm for Healthcare Datasets
    Sharma, Abha
    Kumar, Pushpendra
    Babulal, Kanojia Sindhuben
    Obaid, Ahmed J.
    Patel, Harshita
    INTERNATIONAL JOURNAL OF E-HEALTH AND MEDICAL COMMUNICATIONS, 2022, 13 (04)
  • [32] Clustering categorical data streams
    He, Zengyou
    Xu, Xiaofei
    Deng, Shengchun
    Huang, Joshua Zhexue
    JOURNAL OF COMPUTATIONAL METHODS IN SCIENCES AND ENGINEERING, 2011, 11 (04) : 185 - 192
  • [33] K-Means Extensions for Clustering Categorical Data
    Alwersh, Mohammed
    Kovacs, Laszlo
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2023, 14 (09) : 492 - 507
  • [34] Initialization of K-Modes Clustering for Categorical Data
    Li Tao-ying
    Chen Yan
    Jin Zhi-hong
    Li Ye
    2013 INTERNATIONAL CONFERENCE ON MANAGEMENT SCIENCE AND ENGINEERING (ICMSE), 2013, : 107 - 112
  • [35] A Support Based Initialization Algorithm for Categorical Data Clustering
    Kumar, Ajay
    Kumar, Shishir
    JOURNAL OF INFORMATION TECHNOLOGY RESEARCH, 2018, 11 (02) : 53 - 67
  • [36] Fuzzy Clustering Ensemble Algorithm for Partitioning Categorical Data
    Li, Taoying
    Chen, Yan
    2009 INTERNATIONAL CONFERENCE ON BUSINESS INTELLIGENCE AND FINANCIAL ENGINEERING, PROCEEDINGS, 2009, : 170 - 174
  • [37] A Weight Entropy k-means Algorithm for Clustering Dataset with Mixed Numeric and Categorical Data
    Li, Taoying
    Chen, Yan
    FIFTH INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS AND KNOWLEDGE DISCOVERY, VOL 1, PROCEEDINGS, 2008, : 36 - 41
  • [38] Speed-up for the expectation-maximization algorithm for clustering categorical data
    F. -X. Jollois
    M. Nadif
    Journal of Global Optimization, 2007, 37 : 513 - 525
  • [39] Speed-up for the expectation-maximization algorithm for clustering categorical data
    Jollois, F. -X.
    Nadif, M.
    JOURNAL OF GLOBAL OPTIMIZATION, 2007, 37 (04) : 513 - 525
  • [40] Partition-and-merge based fuzzy genetic clustering algorithm for categorical data
    Thi Phuong Quyen Nguyen
    Kuo, R. J.
    APPLIED SOFT COMPUTING, 2019, 75 : 254 - 264