A k-populations algorithm for clustering categorical data

被引:22
|
作者
Kim, DW [1 ]
Lee, K
Lee, D
Lee, KH
机构
[1] Korea Adv Inst Sci & Technol, Dept BioSyst, Taejon 305701, South Korea
[2] Korea Adv Inst Sci & Technol, Adv Informat Technol Res Ctr, Taejon 305701, South Korea
[3] Korea Adv Inst Sci & Technol, Dept Elect Engn & Comp Sci, Taejon 305701, South Korea
关键词
clustering; categorical data; hierarchical algorithm; k-modes algorithm; fuzzy k-modes algorithm;
D O I
10.1016/j.patcog.2004.11.017
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, the conventional k-modes-type algorithms for clustering categorical data are extended by representing the clusters of categorical data with k-populations instead of the hard-type centroids used in the conventional algorithms. Use of a population-based centroid representation makes it possible to preserve the uncertainty inherent in data sets as long as possible before actual decisions are made. The k-populations algorithm was found to give markedly better clustering results through various experiments. (c) 2005 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:1131 / 1134
页数:4
相关论文
共 50 条
  • [21] A method for k-means-like clustering of categorical data
    Nguyen T.-H.T.
    Dinh D.-T.
    Sriboonchitta S.
    Huynh V.-N.
    Journal of Ambient Intelligence and Humanized Computing, 2023, 14 (11) : 15011 - 15021
  • [22] A CLUSTERING ALGORITHM FOR MIXED NUMERIC AND CATEGORICAL DATA
    Ohn Mar San
    Van-Nam Huynh
    Yoshiteru Nakamori
    JournalofSystemsScienceandComplexity, 2003, (04) : 562 - 571
  • [23] An entropy-based subspace clustering algorithm for categorical data
    Carbonera, Joel Luis
    Abel, Mara
    2014 IEEE 26TH INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE (ICTAI), 2014, : 272 - 277
  • [24] Extensions to the k-Means Algorithm for Clustering Large Data Sets with Categorical Values
    Zhexue Huang
    Data Mining and Knowledge Discovery, 1998, 2 : 283 - 304
  • [25] k-mw-modes: An algorithm for clustering categorical matrix-object data
    Cao, Fuyuan
    Yu, Liqin
    Huang, Joshua Zhexue
    Liang, Jiye
    APPLIED SOFT COMPUTING, 2017, 57 : 605 - 614
  • [26] Automated Attribute Weighting Fuzzy k-Centers Algorithm for Categorical Data Clustering
    Mau, Toan Nguyen
    Huynh, Van-Nam
    MODELING DECISIONS FOR ARTIFICIAL INTELLIGENCE (MDAI 2021), 2021, 12898 : 205 - 217
  • [27] A k-means type clustering algorithm for subspace clustering of mixed numeric and categorical datasets
    Ahmad, Amir
    Dey, Lipika
    PATTERN RECOGNITION LETTERS, 2011, 32 (07) : 1062 - 1069
  • [28] Kernel-Based k-Representatives Algorithm for Fuzzy Clustering of Categorical Data
    Mau, Toan Nguyen
    Huynh, Van-Nam
    IEEE CIS INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS 2021 (FUZZ-IEEE), 2021,
  • [29] Extensions to the k-means algorithm for clustering large data sets with categorical values
    Huang, ZX
    DATA MINING AND KNOWLEDGE DISCOVERY, 1998, 2 (03) : 283 - 304
  • [30] Clustering of Categorical Data Using Intuitionistic Fuzzy k-modes
    Mehta, Darshan
    Tripathy, B. K.
    PROCEEDINGS OF SIXTH INTERNATIONAL CONFERENCE ON SOFT COMPUTING FOR PROBLEM SOLVING (SOCPROS 2016), VOL 1, 2017, 546 : 254 - 263