Additive-Free Ruthenium-Catalyzed Hydrogen Production from Aqueous Formaldehyde with High Efficiency and Selectivity

被引:38
作者
Wang, Lin [1 ]
Ertem, Mehmed Z. [2 ]
Kanega, Ryoichi [1 ]
Murata, Kazuhisa [1 ]
Szalda, David J. [3 ]
Muckerman, James T. [2 ]
Fujita, Etsuko [2 ]
Himeda, Yuichiro [1 ]
机构
[1] Natl Inst Adv Ind Sci & Technol, Environm & Energy Dept, Res Inst Energy Frontier, Tsukuba Cent 5,1-1-1 Higashi, Tsukuba, Ibaraki 3058565, Japan
[2] Brookhaven Natl Lab, Div Chem, Upton, NY 11973 USA
[3] CUNY, Baruch Coll, Dept Nat Sci, New York, NY 10010 USA
来源
ACS CATALYSIS | 2018年 / 8卷 / 09期
关键词
dehydrogenation; formaldehyde; homogeneous catalysis; ruthenium complex; H-2; production; FORMIC-ACID; CO2; HYDROGENATION; METHANOL DEHYDROGENATION; HOMOGENEOUS CATALYSTS; CARBON-DIOXIDE; WATER; COMPLEX; ENERGY; LIGAND; PARAFORMALDEHYDE;
D O I
10.1021/acscatal.8b02088
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
An efficient water-soluble ruthenium complex was developed for selective hydrogen production from aqueous formaldehyde under mild conditions with a high yield (similar to 95%). Hydrogen production by this catalytic system proceeds without using any additives or organic solvents, leading to a high turnover frequency (8300 h(-1)) and a record turnover number of 24 000. Moreover, based on mechanistic experiments and density functional theory (DFT) calculations, a step-by-step mechanism has been proposed for the catalytic cycle.
引用
收藏
页码:8600 / 8605
页数:11
相关论文
共 37 条
  • [1] Kinetics and mechanism of the stereochemical isomerization of an arene-ruthenium complex of the atropisomeric ligand 1,1′-biphenyl-2,2′-diamine
    Alguindigue, SS
    Khan, MA
    Ashby, MT
    [J]. ORGANOMETALLICS, 1999, 18 (24) : 5112 - 5119
  • [2] Reversible Hydrogenation of Carbon Dioxide to Formic Acid and Methanol: Lewis Acid Enhancement of Base Metal Catalysts
    Bernskoetter, Wesley H.
    Hazari, Nilay
    [J]. ACCOUNTS OF CHEMICAL RESEARCH, 2017, 50 (04) : 1049 - 1058
  • [3] Iron(II) Complexes of the Linear rac-Tetraphos-1 Ligand as Efficient Homogeneous Catalysts for Sodium Bicarbonate Hydrogenation and Formic Acid Dehydrogenation
    Bertini, Federica
    Mellone, Irene
    Ienco, Andrea
    Peruzzini, Maurizio
    Gonsalvi, Luca
    [J]. ACS CATALYSIS, 2015, 5 (02): : 1254 - 1265
  • [4] Base-Free Methanol Dehydrogenation Using a Pincer-Supported Iron Compound and Lewis Acid Co-catalyst
    Bielinski, Elizabeth A.
    Foerster, Moritz
    Zhang, Yuanyuan
    Bernskoetter, Wesley H.
    Hazari, Nilay
    Holthausen, Max C.
    [J]. ACS CATALYSIS, 2015, 5 (04): : 2404 - 2415
  • [5] HYDROGEN ECONOMY
    BOCKRIS, JOM
    [J]. SCIENCE, 1972, 176 (4041) : 1323 - &
  • [6] Changing the Mechanism for CO2 Hydrogenation Using Solvent-Dependent Thermodynamics
    Burgess, Samantha A.
    Appel, Aaron M.
    Linehan, John C.
    Wiedner, Eric S.
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2017, 56 (47) : 15002 - 15005
  • [7] Formic Acid as a Hydrogen Energy Carrier
    Eppinger, Jorg
    Huang, Kuo-Wei
    [J]. ACS ENERGY LETTERS, 2017, 2 (01): : 188 - 195
  • [8] Hydrogen Production from a Methanol-Water Solution Catalyzed by an Anionic Iridium Complex Bearing a Functional Bipyridonate Ligand under Weakly Basic Conditions
    Fujita, Ken-ichi
    Kawahara, Ryoko
    Aikawa, Takuya
    Yamaguchi, Ryohei
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2015, 54 (31) : 9057 - 9060
  • [9] Dehydrogenation of Formic Acid Catalyzed by a Ruthenium Complex with an N,N′-Diimine Ligand
    Guan, Chao
    Zhang, Dan-Dan
    Pan, Yupeng
    Iguchi, Masayuki
    Ajitha, Manjaly J.
    Hu, Jinsong
    Li, Huaifeng
    Yao, Changguang
    Huang, Mei-Hui
    Ming, Shixiong
    Zheng, Junrong
    Himeda, Yuichiro
    Kawanami, Hajime
    Huang, Kuo-Wei
    [J]. INORGANIC CHEMISTRY, 2017, 56 (01) : 438 - 445
  • [10] Heim LE, 2016, GREEN CHEM, V18, P1469, DOI [10.1039/c5gc01798j, 10.1039/C5GC01798J]