机构:
Univ Jaume 1, Dept Ingn & Ciencia Computadores, Castellon de La Plana, SpainUniv Jaume 1, Dept Ingn & Ciencia Computadores, Castellon de La Plana, Spain
Fernandez-Redondo, Mercedes
[1
]
Torres-Sospedra, Joaquin
论文数: 0引用数: 0
h-index: 0
机构:
Univ Jaume 1, Dept Ingn & Ciencia Computadores, Castellon de La Plana, SpainUniv Jaume 1, Dept Ingn & Ciencia Computadores, Castellon de La Plana, Spain
Torres-Sospedra, Joaquin
[1
]
Hernandez-Espinosa, Carlos
论文数: 0引用数: 0
h-index: 0
机构:
Univ Jaume 1, Dept Ingn & Ciencia Computadores, Castellon de La Plana, SpainUniv Jaume 1, Dept Ingn & Ciencia Computadores, Castellon de La Plana, Spain
Hernandez-Espinosa, Carlos
[1
]
机构:
[1] Univ Jaume 1, Dept Ingn & Ciencia Computadores, Castellon de La Plana, Spain
来源:
INTELLIGENT COMPUTING, PART I: INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTING, ICIC 2006, PART I
|
2006年
/
4113卷
关键词:
D O I:
10.1007/11816157_45
中图分类号:
TP18 [人工智能理论];
学科分类号:
081104 ;
0812 ;
0835 ;
1405 ;
摘要:
In this paper, we present experiments comparing different training algorithms for Radial Basis Functions (RBF) neural networks. In particular we compare the classical training which consists of an unsupervised training of centers followed by a supervised training of the weights at the output, with the full supervised training by gradient descent proposed recently in same papers. We conclude that a fully supervised training performs generally better. We also compare Batch training with Online training and we conclude that Online training suppose a reduction in the number of iterations.
机构:
Inst Nacl Matemat Pura & Aplicada, Vis & Graph Lab, Rio De Janeiro, BrazilInst Nacl Matemat Pura & Aplicada, Vis & Graph Lab, Rio De Janeiro, Brazil
Macedo, I.
Gois, J. P.
论文数: 0引用数: 0
h-index: 0
机构:Inst Nacl Matemat Pura & Aplicada, Vis & Graph Lab, Rio De Janeiro, Brazil
Gois, J. P.
Velho, L.
论文数: 0引用数: 0
h-index: 0
机构:
Inst Nacl Matemat Pura & Aplicada, Vis & Graph Lab, Rio De Janeiro, BrazilInst Nacl Matemat Pura & Aplicada, Vis & Graph Lab, Rio De Janeiro, Brazil