Gradient Descent and Radial Basis Functions

被引:2
|
作者
Fernandez-Redondo, Mercedes [1 ]
Torres-Sospedra, Joaquin [1 ]
Hernandez-Espinosa, Carlos [1 ]
机构
[1] Univ Jaume 1, Dept Ingn & Ciencia Computadores, Castellon de La Plana, Spain
来源
INTELLIGENT COMPUTING, PART I: INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTING, ICIC 2006, PART I | 2006年 / 4113卷
关键词
D O I
10.1007/11816157_45
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we present experiments comparing different training algorithms for Radial Basis Functions (RBF) neural networks. In particular we compare the classical training which consists of an unsupervised training of centers followed by a supervised training of the weights at the output, with the full supervised training by gradient descent proposed recently in same papers. We conclude that a fully supervised training performs generally better. We also compare Batch training with Online training and we conclude that Online training suppose a reduction in the number of iterations.
引用
收藏
页码:391 / 396
页数:6
相关论文
共 50 条
  • [41] Time varying radial basis functions
    Jamshidi, A. A.
    Gear, C. W.
    Kevrekidis, I. G.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2014, 266 : 61 - 72
  • [42] On spherical averages of radial basis functions
    Baxter, B. J. C.
    FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2008, 8 (03) : 395 - 407
  • [43] CONVERGENCE PROPERTIES OF RADIAL BASIS FUNCTIONS
    JACKSON, IRH
    CONSTRUCTIVE APPROXIMATION, 1988, 4 (03) : 243 - 264
  • [44] INTERPOLATION BY PERIODIC RADIAL BASIS FUNCTIONS
    LIGHT, WA
    CHENEY, EW
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1992, 168 (01) : 111 - 130
  • [45] Radial basis functions under tension
    Bouhamidi, A
    Le Méhauté, A
    JOURNAL OF APPROXIMATION THEORY, 2004, 127 (02) : 135 - 154
  • [46] MEAN DIMENSION OF RADIAL BASIS FUNCTIONS
    Hoyt, Christopher
    Owen, Art B.
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2024, 62 (03) : 1191 - 1211
  • [47] Hermite Radial Basis Functions Implicits
    Macedo, I.
    Gois, J. P.
    Velho, L.
    COMPUTER GRAPHICS FORUM, 2011, 30 (01) : 27 - 42
  • [48] Approximation with fractal radial basis functions
    Kumar, D.
    Chand, A. K. B.
    Massopust, P. R.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2025, 454
  • [49] DEVICE MODELING BY RADIAL BASIS FUNCTIONS
    MEES, AI
    JACKSON, MF
    CHUA, LO
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-FUNDAMENTAL THEORY AND APPLICATIONS, 1992, 39 (01): : 19 - 27